

GAME: SAY ONE RELATED WORD

Tree		

18.2.2016

System Thinking 2

Socio-Ecological Systems and Regime Shifts

18 2 2016

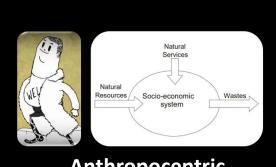
Summary

- 1) Socio-ecological system
- 2) Sustainable Development
- 3) Resilience and Regime Shifts

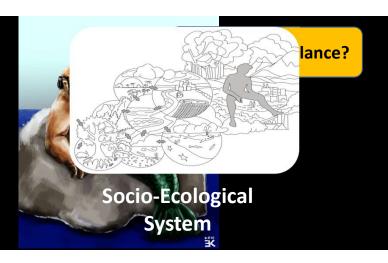
18 2 2016

Gilberto Gallopín, A systems approach to sustainability And sustainable development (2003)

8.2.2016


What do we want to sustain?

What do we want to change?

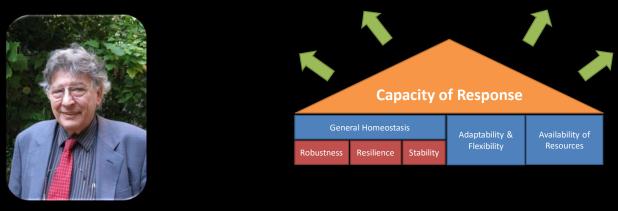


Anthropocentric Position

Extreme Biocentric Position

"A socio-ecological system is any system composed of a human component in interaction with an ecological component."

Thinking ourselves as in a socio-ecological system is the closest way to reality


18.7.2016

«Cool, so now we have this socio-ecological system...

And how do we sustain it?»

18 2 2016

18.7.006

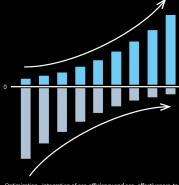
The ethical foundations of sustainable development

Dynamism

Concept

Implementation

A variety of perspectives



Sustainable development

'The end goal of conventional sustainable strategies is to be carbon neutral. But you can only have zero carbon emissions when you do not exist. So is this our biggest goal? Instead of not existing, lets create a big positive footprint'.

Professor Dr. Michael Braungart System Thinker – Professor of Chemistry in Erasmus University in Rotterdam

Optimization - Integration of eco-efficiency and eco -effectiveness, to support the increase in value . Ambition to leave a positive environmental footprint.

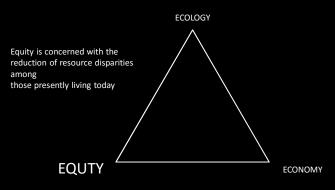
18.2.2010

10

The ethical foundations of sustainable development

Dynamism

Concept


Implementation

A variety of perspectives

Intergenerational justice

Future generations should be taken on account when deciding for resource depletion or allocation.

18.2.2016

The ethical foundations of sustainable development

Dynamism

Concept

Implementation

A variety of perspectives

Fox → Rabbit

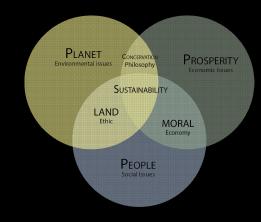
Sustainable development cannot exist as some static equilibrium state (Brooks, 1992).

ttp://www.clab.fi/

The ethical foundations of sustainable development

Dynamism

Concept


Implementation

A variety of perspectives

Competing objectives

Approach, which focuses on reconciling social, economic and ecological goals (Peterson, 1997)

The ethical foundations of sustainable development

Dynamism

Concept

Implementation

A variety of perspectives

City Planning

Implementing a sustainable concept requires achievable goals, consensus building and perspectives. (Peterson, 1997).

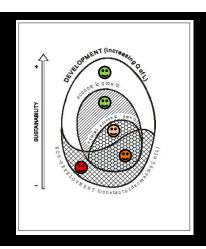
The ethical foundations of sustainable development

Dynamism

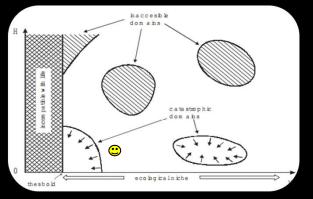
Concept

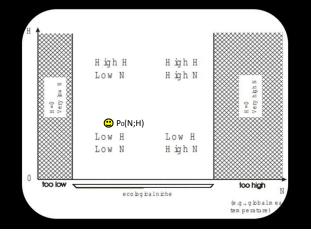
Implementation

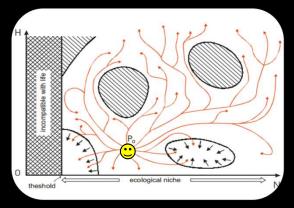
A variety of perspectives



Biomimicry


No single group has authority to define sustainable development (Peterson, 1997).




How can a society develop?

	Happiness	Material Growth	Growth	Sustainable
Under- development	NO	NO	NO	NO
Mal-development	NO	YES	YES	NO
Material Economic Development	YES	YES	YES	NO
Non-Material Economic Development	YES	NO	YES	YES
No Growth Development	YES	NO	NO	YES

8 2 2016

23

Five Coevolution Attitudes in SE Systems

Paradigm 1. Standardization

Paradigm 2. Optimization

Paradigm 3. Pessimization

Paradigm 4. Equitization

Paradigm 5. Stabilization

"Establishment of absolute normas, environment and development standards"

"some management strategies which satisfies all desired standards over the short term can lead nevertheless to an irreversible development which destroys the long-term feasibility of the paradigm"

https://www.ted.com/talks/kent_larson_brilliant_designs_to_fit_more_people_in_every_city?language=en#t-11987

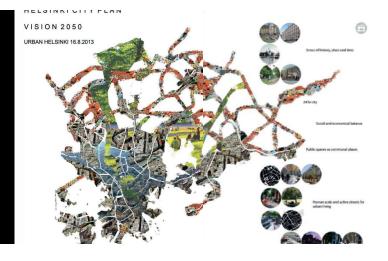
Five Coevolution Attitudes in SE Systems

Paradigm 1. Standardization Paradigm 2. Optimization Paradigm 3. Pessimization Paradigm 4. Equitization Paradigm 5. Stabilization "Search for the best bundle"

(Assumption of perfect control over the socio-ecological system, but if that is not true → risk of system falling in one of the catastrophic domains)

Five Coevolution Attitudes in SE Systems

Paradigm 1. Standardization


Paradigm 2. Optimization

Paradigm 3. Pessimization Paradigm 4. Equitization

Paradigm 5. Stabilization

"Preventing the worst"

"Looking for the smallest possible amount of damage instead of the greatest possible benefit"

Five Coevolution Attitudes in SE Systems

Paradigm 1. Standardization Paradigm 2. Optimization Paradigm 3. Pessimization Paradigm 4. Equitization Paradigm 5. Stabilization "Preserving the options for future generations"

"not contracting the "accessible universe" over time"

Five Coevolution Attitudes in SE Systems

Paradigm 1. Standardization Paradigm 2. Optimization Paradigm 3. Pessimization

Paradigm 4. Equitization

Paradigm 5. Stabilization

"Bringing the socio-ecological system into a desirable state in the coevolution"

"Reach a desirable coevolution point and try to maintain it through good management" $\,$

www.clab.fi

Resilience and Regime Shifts

1 Minute stretching before continuation;)

29

Understandings of Resilience

- 1) Engineering Resilience
- 2) Ecosystem Resilience
- 3) Socio-Ecological Resilience

Hallå! I am **Carl Folke**, Director of Stockholm Resilience Centre (ever heard of planetary boundaries? :))

I am trans-disciplinary Ecologist, specialist in Economics and Resilience

In few word, I am also quiet a awesome guy. Listen to Heini fo more about my ideas :D

18.2.2016

Engineering resilience

system	simple	
focus behaviour	near equilibrium	
measurement	return time, efficiency	
concepts	recovery, stable state, equilibrium	

Ecosystem/ecological resilience (=social resilience)

system	complex
focus behaviour	
measurement	
concepts	

25.5.201

Regime shifts - Intro

Reviewing the evidence of *regime shifts* in our environments in relation to *resilience* of adaptive ecosystems, social development and roles of biological *diversity* in that context.

Definition of resilience:

Here we define resilience as the capacity of a system to absorb disturbance and reorganize while undergoing change so as to retain essentially the same function, structure, identity, and feedbacks (Walker et al. 2004).

Resilience and regime shifts:

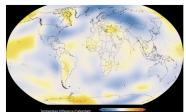
Resilience has a direct effect on regime shift.

- Removing whole functional groups of species or trophic levels.
- · Direct impact on ecosystem.

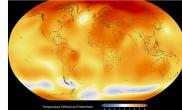
18.2.2016

Regime shifts Regime shifts imply shifts in ecosystem services and consequent impacts on human

societies.



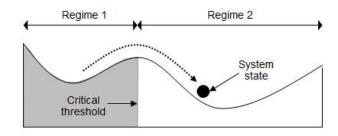
18.2.2016

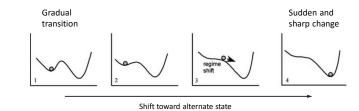


Old Perspective vs New Perspective

- Stable and infinitely resilient environment,
- Global steady state.
- Resilience can be been eroded
 self-repairing capacity of
 ecosystems should no longer be
 taken for granted

1970 – global temperature

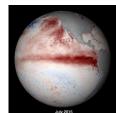


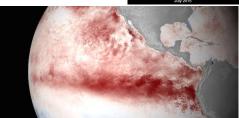

2015 - global temperature Data source: NASA/GISS

Regime shifts transition

Ecosystems often do not respond to gradual change in a smooth way.

18.2.2016 36





El Nino Disease, bleaching

Algaedominating reef

Coral-dominated reed

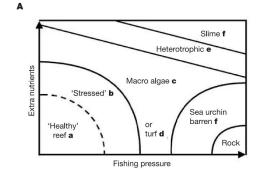
Overfishing

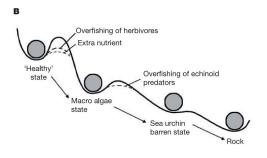
Coastal

eutrophication

Sea surface temperature

regime shift


Disease, bleaching 80% of reef will not recover from this.


Climate change El Nino

Algae-dominated reefs.
Increase in DOC and result in more coral


breaching.

Carl Folke, Steve Carpenter, Brian Walker, Marten Scheffer, Thomas Elmqvist, Lance Gunderson and C.S. Holling7 (2004)

Bellwood et al. (2004) Bellwood et al. (2004)

Causes of regime shifts

In context of eco-system human actions are first apparent reason; regime shifts may occur more easily if resilience has been reduced as a consequence of human actions.

Trophic cascade

Removal of functional groups of species and their response diversity, such as the loss of whole trophic levels (top-down effects)

Alternation of disturbance regimes

Alteration of the magnitude, frequency, and duration of disturbance regimes to which the biota is adapted.

Impacting via emmission

Impact on ecosystems via emissions of waste and pollutants (bottom-up effects) and climate change.

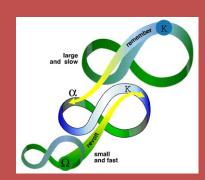
Bellwood et al. (2004) Bellwood et al. (2004) 41

Ecosystem/ecological resilience (=social resilience)

system	complex
focus behaviour	
measurement	
concepts	

25.5.201

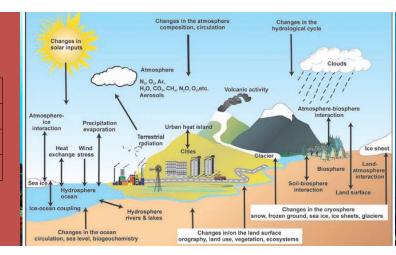
Complex adaptive systems


diversity and individuality

localised interactions

autonomous selection process

replication or enhancement


Levin (1998)

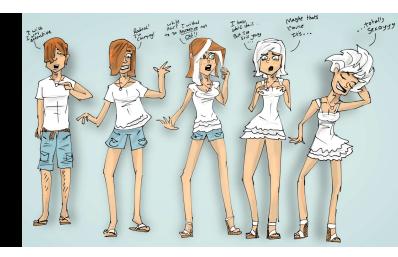
25.5.201

Ecosystem/ecological resilience (=social resilience)

system	complex (adaptive)
focus behaviour	at stability boundaries
measurement	capacity to withstand shock while maintaining function
concepts	multiple equilibria, stability landscapes

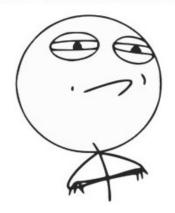
Social-ecological resilience

system	complex adaptive
focus behaviour	distrubance and reorganization, sustaining and developing
measurement	adaptability, transformability, learning, innovation
concepts	cross-scale dynamic interactions



Transformability

is the capacity to create a fundamentally new system when the existing system is untenable (Walker et al. 2004)


Social-ecological resilience

system	complex adaptive
focus behaviour	distrubance and reorganization@sustaining and developing
measurement	adaptability, transformability, learning, innovation
concepts	cross-scale dynamic interactions

18.2.2016

CHALLENGE ACCEPTED

