
© 2014 David Ing

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Canada License.

Incubating Service Systems Thinking:
New frames for collaborating on a pattern language
for service systems

David Ing
International Society for the Systems Sciences, and
Aalto University

July 2014

http://creativecommons.org/licenses/by-nc-nd/2.5/ca/

July 2014Incubating Service Systems Thinking2 © 2014 David Ing

Agenda

1. Service Systems
Thinking, In Brief

2. Conversations for
Orientation

3. Conversations for
Possibilities

4. Conversations for
Action

5. Conversations for
Clarification

July 2014Incubating Service Systems Thinking3 © 2014 David Ing

Agenda

1.1 An intentional
representation

1.2 An object-process
representation

1. Service Systems
Thinking, In Brief

2. Conversations for
Orientation

3. Conversations for
Possibilities

4. Conversations for
Action

5. Conversations for
Clarification

July 2014Incubating Service Systems Thinking4 © 2014 David Ing

In an intentional representation, service systems
thinking is a resource that can be applied by service
scientists, managers, engineers and designers

Key (iStar notation):

July 2014Incubating Service Systems Thinking5 © 2014 David Ing

In an object-process representation, service
systems thinking is handled by a community

service
systems
thinking

service
systems
thinking

community

Key (OPM notation): object process agent handles process object is exhibited by (o or p)
process is exhibited by (o or p)

July 2014Incubating Service Systems Thinking6 © 2014 David Ing

Service systems thinking exhibits systems thinking,
SSME, generative pattern language and multiple
perspectives open collaboration

service
systems
thinking

systems thinking

SSME:
service science,

management,
engineering + design

generative pattern
language

multiple-perspectives
open collaboration

service
systems
thinking

community

Key (OPM notation): object process agent handles process object is exhibited by (o or p)
process is exhibited by (o or p)

July 2014Incubating Service Systems Thinking7 © 2014 David Ing

Development within the community can be recognized
as conversations: for orientation, for possibilities, for
action, and for clarification

service
systems
thinking

systems thinking

SSME:
service science,

management,
engineering + design

generative pattern
language

multiple-perspectives
open collaboration

service
systems
thinking

community

conversations for
orientation

conversations for
possibilities

conversations for
action

conversations for
clarification

Key (OPM notation): object process agent handles process object is exhibited by (o or p)
process is exhibited by (o or p)

July 2014Incubating Service Systems Thinking8 © 2014 David Ing

Agenda

2.1 Systems thinking

2.2 SSMED
(Service Science, Management,
Engineering and Design)

2.3 Generative Pattern
Language

2.4 Multiple Perspectives
Open Collaboration

1. Service Systems
Thinking, In Brief

2. Conversations for
Orientation

3. Conversations for
Possibilities

4. Conversations for
Action

5. Conversations for
Clarification

July 2014Incubating Service Systems Thinking9 © 2014 David Ing

Conversations for orientation

July 2014Incubating Service Systems Thinking10 © 2014 David Ing

Systems thinking is a perspective on
wholes, parts and their relations
containing
whole

Function (non-living)

or role (living)

part
A(t)

part
A

(t)

part
B

(t)

part
A

(t)

structure

part
A

(t+1)

process

Function
“contribution of the
part to the whole”

Structure
“arrangement in

space”

Process
“arrangement in

time”

Source: Ing, David. 2013. “Rethinking Systems Thinking: Learning and Coevolving with the World.” Systems Research and Behavioral Science 30
(5): 527–47. doi:10.1002/sres.2229. Gharajedaghi, Jamshid. 1999. Systems Thinking: Managing Chaos and Complexity : A Platform for  
Designing Business Architecture. Elsevier. http://books.google.ca/books?id=7N-sFxFntakC .

-

http://books.google.ca/books?id=7N-sFxFntakC

July 2014Incubating Service Systems Thinking11 © 2014 David Ing

In authentic systems thinking, synthesis precedes
analysis and the containing whole is appreciated

containing
whole

Function (non-living)
or role (living)

part
A(t)

Synthesis precedes analysis

1. Identify a containing whole (system)
of which the thing to be explained is a

part.

2. Explain the behavior or properties of
the containing whole

3. Then explain the behavior or
properties of the thing to the explained

in terms of its role(s) or function(s)
within its containing whole.

Source: Ackoff, Russell L. 1981. Creating the Corporate Future: Plan or Be Planned For. New York: John Wiley and Sons.
http://books.google.com/books?id=8EEO2L4cApsC.

-

http://books.google.com/books?id=8EEO2L4cApsC

July 2014Incubating Service Systems Thinking12 © 2014 David Ing

Service systems in our society can be ranked from
concrete to abstract, as subjects for schoolchildren

●Transportation K

●Water and waste management 1

●Food and global supply chain 2

●Energy and energy grid 3

●Information and communications
(ICT) infrastructure

4

Systems that move,
store, harvest,

process

Systems that enable
healthy, wealthy and

wise people

Systems that govern

●Building and construction 5

●Banking and finance 6

●Retail and hospitality 7

●Healthcare 8

●Education (including universities) 9

●Government (cities) 10

●Government (regions / states) 11

●Government (nations) 12

Source: Spohrer, James C., and Paul P. Maglio. 2010. “Toward a Science of Service Systems: Value and Symbols.” In Service Science: Research and
Innovations in the Service Economy, edited by Paul P. Maglio, Cheryl A. Kieliszewski, and James C. Spohrer, 157–94. 10.1007/978-1-4419-1628-0_9

-

July 2014Incubating Service Systems Thinking13 © 2014 David Ing

Service systems (Cambridge IfM and IBM, 2008)

A service system can be defined as
a dynamic configuration of resources
(people, technology, organisations

and shared information) that
creates and delivers value

between the provider and the customer
through service.

In many cases, a service system is
a complex system in that

configurations of resources
interact in a non-linear way.

Primary interactions take place at the interface
between the provider and the customer.

However, with the advent of ICT,
customer-to-customer and supplier-to-supplier

interactions have also become prevalent.
These complex interactions create

a system whose behaviour
is difficult to explain and predict.

(IfM and IBM, 2008, p. 6)

complex
system

resources
is a

dynamic
configuration

of

people

technology

shared
information

organisations
are

value
provider

customer

creates
and

delivers
between

service

through

service
system

can
be a

interactions

provider -
customer

customer -
customer

supplier -
supplier

has

at the interface between

Source: IfM, and IBM. 2008. Succeeding through Service Innovation: A Service Perspective for Education, Research, Business and Government.
Cambridge, UK: University of Cambridge Institute for Manufacturing. http://www.ifm.eng.cam.ac.uk/ssme/ .

-

http://www.ifm.eng.cam.ac.uk/ssme/

July 2014Incubating Service Systems Thinking14 © 2014 David Ing

The theory of firms adding value cost has given way to
mobilizing customers towards creating their own value

Our traditional about value … [says]
every company occupies a position on
the value chain. Upstream, suppliers
provide inputs. The company then adds
values to these inputs, before passing
them downstream to then next actor in
the chain [whether another business or
the final consumer].

… IKEA's strategic intent [is] to understand how customers can
create their own value and create a business system that
allows them to do it better. IKEA's goal is not to relieve
customers of doing certain things but to mobilize them to do
easily certain things they have never done before. Put another
way, IKEA invents value by enabling customers' own value-
creating activities. … Wealth is [the ability] to realize your own
ideas.

Added value
cost

Added
value

cost

Added
value cost

Suppliers Service
Provider

Customer

Enabling interactive value creationAdding value cost

Source: Richard Normann and Rafael Ramirez. 1993. “From Value Chain to Value Constellation: Designing Interactive Strategy.” Harvard Business Review
71: 65–65. http://hbr.org/1993/07/designing-interactive-strategy .

interactive value (in use)

(independent)
value

(in exchange)

coproducing, with offering as input

produced, with
offering as

output

Beneficiary
Stakeholders

Customer
Signatory

Provider
SignatorySupplier

inter-
active

non-
inter-
active

http://hbr.org/1993/07/designing-interactive-strategy

July 2014Incubating Service Systems Thinking15 © 2014 David Ing

Basic Concepts. If we are to understand human history as the evolution and design
of value-cocreation mechanisms between entities, then where should we begin?

Source: Jim Spohrer and Stephen K. Kwan. 2009. “Service Science, Management, Engineering, and Design (SSMED): An Emerging Discipline - Outline &
References.” International Journal of Information Systems in the Service Sector 1 (3): 1–31. doi:10.4018/jisss.2009070101 .

Let’s start by understanding the following ten basic concepts:

 1. Resources Businesses may own physical resources or contract for physical resources, but as a type of resource they are
themselves not physical, but instead a conceptual-legal construct. So in the end, all resources fall into one of four types:
physical-with-rights, not-physical-with-rights, physical-with-no-rights, and not-physical-with-rights.

 2. Service system
entities

The most common types of service system entities are people and organizations. New types of service system entities
are constantly emerging and disappearing. Recently, open-source and on-line communities have emerged as service
systems entities.

 3. Access rights “By what authority, do you use that resource?” Service system entities have four main types of access rights to the
resources within their configuration: owned outright, leased/contracted, shared access, and privileged access. Shared
access resources include resources such as air, roads, natural language, and internet web sites. Privileged access
resources include resources such as thoughts, individual histories, and family relationships.

 4. Value-proposition-
based interactions

“I’ll do this, if you’ll do that.” [….] Interactions via value propositions are intended to cocreate-value for both interacting
entities. Both interacting entities must agree, explicitly or tacitly, to the value proposition.

 5. Governance
mechanisms

“Here’s what will happen if things go wrong.” [….] If value is not realized as expected, this may result in a dispute
between the entities. Governance mechanisms reduce the uncertainty in these situations by prescribing a mutually
agreed to process for resolving the dispute.

 6. Service system
networks

“Here’s how we can all link up.” [….] Over time, for a population of entities, the patterns of interaction can be viewed as
networks with direct and indirect connectivity strengths. A service system network is an abstraction that only emerges
when one assumes a particular analysis overlay on the history of interactions amongst service system entities.

 7. Service system
ecology

“Populations of entities, changing the ways they interact.” Different types of service systems entities exist in populations,
and the universe of all service system entities forms the service system ecology or service world ….

 8. Stakeholders “When it comes to value, perspective really matters.” The four primary types of stakeholders are customer, provider,
authority, and competitor. In addition … other stakeholder perspectives include employee, partner, entrepreneur,
criminal, victim, underserved, citizen, manager, children, aged, and many others.

 9. Measures “Without standardized measures, it is hard to agree and harder to trust.” The four primary types of measures are quality,
productivity, compliance, and sustainable innovation.

10. Outcomes “How did we do? Can this become a new routine or long-term relationship?” […] Beyond a standard two player game,
with a customer player and a provider player, ISPAR assumes there exists both an authority player as well as a
competitor-criminal player.

https://www.academia.edu/266483/Service_Science_Management_Engineering_and_Design_SSMED_An_Emerging_Discipline-Outline_and_References

July 2014Incubating Service Systems Thinking16 © 2014 David Ing

Service systems worldview. These ten basic
concepts underlie the service systems worldview ...

Source: Jim Spohrer and Stephen K. Kwan. 2009. “Service Science, Management, Engineering, and Design (SSMED): An Emerging Discipline - Outline &
References.” International Journal of Information Systems in the Service Sector 1 (3): 1–31. doi:10.4018/jisss.2009070101 .

… the world is made up of
populations of service system entities that

interact (normatively) via
value propositions to cocreate-value, but often

disputes arise and so
governance mechanisms are invoked to resolve disputes.

 1. Resources

 2. Service system
entities

 3. Access rights

 4. Value-proposition-
based interactions

 5. Governance
mechanisms

 6. Service system
networks

 7. Service system
ecology

 8. Stakeholders

 9. Measures

10. Outcomes

Formal service system entities are
types of legal entities with rights and
responsibilities, that can own property,
and with named identities that can
create contracts with other legal entities.
[….] Formal service systems exist within
a legal and economic framework of
contracts and expectations.

Informal service system entities
include families ...,
open source communities ..., and
many other societal or social
systems that are governed typically
by unwritten cultural and behavioral
norms (social systems with
rudimentary political systems).

Natural history of service system entities. Service science seeks to create an
understanding of the formal and informal nature of service in terms of entities, interactions, and
outcomes, and how these evolve (or are designed) over time. An initial premise is that the entities,
which are sophisticated enough to engage in rationally designed service interactions that can consistently lead to
win-win value cocreation outcomes, must be able to build models of the past (reputation, trust), present, and future
(options, risk-reward, opportunities, hopes and aspirations) possible worlds, including models of themselves and
others, and reason about knowledge value ….

https://www.academia.edu/266483/Service_Science_Management_Engineering_and_Design_SSMED_An_Emerging_Discipline-Outline_and_References

July 2014Incubating Service Systems Thinking17 © 2014 David Ing

Basic questions. A general theory of service system entities and networks
formed through value-proposition-based interactions has four parts

Source: Jim Spohrer and Stephen K. Kwan. 2009. “Service Science, Management, Engineering, and Design (SSMED): An Emerging Discipline - Outline &
References.” International Journal of Information Systems in the Service Sector 1 (3): 1–31. doi:10.4018/jisss.2009070101 .

Science
(improve understanding,
map natural history,
validate mechanisms,
make predictions).
What are service system
entities, how have they
naturally evolved to present,
and how might they evolve in
the future? What can we
know about their interactions,
how the interactions are
shaped (value propositions,
governance mechanisms),
and the possible outcomes of
those interactions both short-
term and long-term?

Sciences of the artificial. Sciences of the artificial are different from natural sciences, and so it becomes especially important to
consider these four parts – science, management, engineering, and design – as important knowledge components. In “The Sciences of the Artificial”
(Simon 1996), Simon reflects “The world we live in today is much more man-made, or artificial, world than it is a natural world....

Service Science, Management, Engineering, and Design (SSMED) is emerging as one of the sciences of the artificial.
Service science is knowledge about service system entities, value-proposition-based interactions (or value-cocreation
mechanisms), governance mechanisms, and the other seven basic concepts. Following Simon even further, one could argue
that service system entities are physical symbol systems, dealing with symbols that are named resources, and grounded in
physical routines for carrying out the symbolic manipulations related to named resources.

… which directly lead to the four basic types of questions that SSMED seeks to answer.

Management
(improve capabilities,
define progress measures,
optimize investment
strategy).
How should one invest to create,
improve, and scale service system
networks? How do the four
measures of quality, productivity,
compliance, and sustainable
innovation relate to numerous key
performance indicators (KPIs) of
business and societal systems? Is
there a “Moore’s Law” of service
system investment? Can doubling
information lead to a doubling of
capabilities (performance) on a
predictable basis?

Engineering
(improve control,
optimize resources).
How can the performance
of service system entities
and scaling of service
system networks be
improved by the invention
of new technologies (and
environmental
infrastructures) or the
reconfiguration of existing
ones? What is required to
develop a CAD
(Computer-Aided Design)
tool for service system
entity and service system
network design?

Design
(improve experience,
explore possibilities).
How can one best
improve the experience
of people in service
system entities and
networks? How can the
experience of service
system creation,
improvement, and
scaling be enhanced by
better design? Can the
space of possible value
propositions and
governance
mechanisms be
explored systematically?

https://www.academia.edu/266483/Service_Science_Management_Engineering_and_Design_SSMED_An_Emerging_Discipline-Outline_and_References

July 2014Incubating Service Systems Thinking18 © 2014 David Ing

Source: Lysanne Lessard and Eric Yu. 2013. “Service Systems Design: An Intentional Agent Perspective.” Human Factors and Ergonomics in Manufacturing
& Service Industries 23 (1): 68–75. doi:10.1002/hfm.20513.

Softgoal

Key service system
concepts

i* constructs

Service system
 entity

High-level
interests

Expected
benefits

Value
propositions

Resources

Actor

Softgoal

Task
goal

Resource
goal

+

+

Softgoal

Actor

Softgoal

Task
goal

Resource
goal

+

+Contribution link

Contribution link
DD

Decomposition link

Dependency
link

Key concepts of value cocreation can be expressed
through intentional (iStar) modeling constructs

July 2014Incubating Service Systems Thinking19 © 2014 David Ing

Generative pattern language – systems generating systems (1968)

July 2014Incubating Service Systems Thinking20 © 2014 David Ing

A Pattern Language Which Generates Multi-Service Centers (1968)

July 2014Incubating Service Systems Thinking21 © 2014 David Ing

A Pattern Language Which Generates Multi-Service Centers (1968)

July 2014Incubating Service Systems Thinking22 © 2014 David Ing

Summaries of 64 Patterns (1968)

July 2014Incubating Service Systems Thinking23 © 2014 David Ing

The Idea of a Pattern (1968)

July 2014Incubating Service Systems Thinking24 © 2014 David Ing

An evolution of pattern languages across domains

b

1979 http://books.google.com/books?id=H6CE9hlbO8sC

1977 http://books.google.com/books?id=hwAHmktpk5IC
; http://www.patternlanguage.com/

1994 http://books.google.com/books?id=6oHuKQe3TjQC

2005 http://books.google.com/books?id=6K5QAAAAMAAJ ;
http://orgpatterns.wikispaces.com/

http://books.google.com/books?id=H6CE9hlbO8sC
http://books.google.com/books?id=hwAHmktpk5IC
http://www.patternlanguage.com/
http://books.google.com/books?id=6oHuKQe3TjQC
http://books.google.com/books?id=6K5QAAAAMAAJ
http://orgpatterns.wikispaces.com/

July 2014Incubating Service Systems Thinking25 © 2014 David Ing

127 INTIMACY GRADIENT**

Source: Christopher Alexander et. al. 1997, A Pattern Language: Towns, Building, Construction, Oxford Press.-

. . . if you know roughly where
you intend to place the building
wings -- WINGS OF LIGHT
(107), and how many stories
they will have -- NUMBER OF
STORIES (96), and where the
MAIN ENTRANCE (110) is, it
is time to work out the rough
disposition of the major areas
on every floor. In every
building the relationship
between the public areas and
private areas is most
important.

* * *

Unless the spaces in a
building are arranged in a
sequence which
corresponds to their degrees
of privateness, the visits
made by strangers, friends,
guests, clients, family, will
always be a little awkward.

In any building -- house, office, public building, summer cottage - people need a gradient of settings,
which have different degrees of intimacy. A bedroom or boudoir is most intimate; a back sitting room. or
study less so; a common area or kitchen more public still; a front porch or entrance room most public of
all. When there is a gradient of this kind, people can give each encounter different shades of meaning,
by choosing its position on the gradient very carefully. In a building which has its rooms so interlaced
that there is no clearly defined gradient of intimacy, it is not possible to choose the spot for any particular
encounter so carefully; and it is therefore impossible to give the encounter this dimension of added
meaning by the choice of space. This homogeneity of space, where every room has a similar degree of
intimacy, rubs out all possible subtlety of social interaction in the building.

We illustrate this general fact by giving an example from Peru - a case which we have studied in detail.
[….]

The intimacy gradient is unusually crucial in a Peruvian house. But in some form the pattern seems to
exist in almost all cultures. We see it in widely different cultures -- compare the plan of an African
compound, a traditional Japanese house, and early American colonial homes -- and it also applies to
almost every building type -- compare a house, a small shop, a large office building, and even a church.
It is almost an archetypal ordering principle for all man's buildings. All buildings, and all parts of buildings
which house well defined human groups, need a definite gradient from "front" to "back," from the most
formal spaces at the front to the most intimate spaces at the back.

In an office the
sequence might be:
entry lobby, coffee
and reception areas,
offices and
workspaces, private
lounge.

In a small shop the sequence might
be: shop entrance, customer milling
space, browsing area, sales
counter, behind the counter, private
place for workers.

In a house: gate, outdoor porch,
entrance, sitting wall, common
space and kitchen, private garden,
bed alcoves.

And in a more formal house, the
sequence might begin with
something like the Peruvian sala -- a
parlor or sitting room for guests.

July 2014Incubating Service Systems Thinking26 © 2014 David Ing

127 INTIMACY GRADIENT**
. . . if you know roughly where
you intend to place the building
wings -- WINGS OF LIGHT
(107), and how many stories
they will have -- NUMBER OF
STORIES (96), and where the
MAIN ENTRANCE (110) is, it
is time to work out the rough
disposition of the major areas
on every floor. In every
building the relationship
between the public areas and
private areas is most
important.

* * *

Unless the spaces in a
building are arranged in a
sequence which
corresponds to their degrees
of privateness, the visits
made by strangers, friends,
guests, clients, family, will
always be a little awkward.

Therefore:
Lay out the spaces of a building so that they create a
sequence which begins with the entrance and the most
public parts of the building, then leads into the slightly
more private areas, and finally to the most private
domains.

Source: Christopher Alexander et. al. 1997, A Pattern Language: Towns, Building, Construction, Oxford Press.-

At the same time that common areas are to the front, make sure that they
are also at the heart and soul of the activity, and that all paths between
more private rooms pass tangent to the common ones -- COMMON
AREAS AT THE HEART (129). In private houses make the ENTRANCE
ROOM (130) the most formal and public place and arrange the most
private areas so that each person has a room of his own, where he can
retire to be alone A ROOM OF ONE'S OWN (141). Place bathing rooms
and toilets half-way between the common areas and the private ones, so
that people can reach them comfortably from both BATHING ROOM (144);
and place sitting areas at all the different degrees of intimacy, and shape
them according to their position in the gradient - SEQUENCE OF SITTING
SPACES (142). In offices put RECEPTION WELCOMES YOU (149) at
the front of the gradient and HALF-PRIVATE OFFICE (152) at the
back. . . .

* * *

July 2014Incubating Service Systems Thinking27 © 2014 David Ing

127 INTIMACY GRADIENT**

Source: Christopher Alexander et. al. 1997, A Pattern Language: Towns, Building, Construction, Oxford Press.-

July 2014Incubating Service Systems Thinking28 © 2014 David Ing

127 INTIMACY GRADIENT**

Source: http://www.lifewithalacrity.com/2004/08/intimacy_gradie.html

http://www.lifewithalacrity.com/2004/08/intimacy_gradie.html

July 2014Incubating Service Systems Thinking29 © 2014 David Ing

The Hillside Group – Design Patterns

Source: http://hillside.net/patterns

http://hillside.net/patterns

July 2014Incubating Service Systems Thinking30 © 2014 David Ing

The Hillside Group – Software (Design) Pattern (Definition)

Source: http://hillside.net/patterns/50-patterns-library/patterns/222-design-pattern-definition

http://hillside.net/patterns/50-patterns-library/patterns/222-design-pattern-definition

July 2014Incubating Service Systems Thinking31 © 2014 David Ing

Example pattern – Lucent Telecommunications product

Source: http://hillside.net/patterns/50-patterns-library/patterns/222-design-pattern-definition

Description

Name: Try All Hardware Combos

Problem: The control complex of a fault-tolerant system can arrange its
subsystems in many different configurations. There are many possible paths
through the subsystems. How do you select a workable configuration when there
is a faulty subsystem?

Context: The processing complex has several duplicated subsystems
including a CPU, static and dynamic memory, and several busses. Standby units
increase system reliability. 16 possible configurations (64 in the 4 ESS) of these
subsystems give fully duplicated sparing in the 5ESS. Each such configuration is
called a configuration state.

Forces: You want to catch and remedy single, isolated errors. You also want to
catch errors that aren't easily detected in isolation but result from interaction
between modules. You sometimes must catch multiple concurrent errors. The
CPU can't sequence subsystems through configurations since it may itself be
faulty. The machine should recover by itself without human intervention, many
high-availability system failures come from operator errors, not primary system
errors. We want to reserve human expertise for problems requiring only the
deepest insights.

Solution: Maintain a 16-state counter in hardware called the configuration
counter. There is a table that maps that counter onto a configuration state. The
5ESS switch tries all side 0 units (a complete failure group), then all side 1 units
(the other failure group), seeking an isolated failure. When a reboot fails, the state
increments and the system tries to reboot again. The subsequent counting states
look for multiple concurrent failures caused by interactions between system
modules.

Resulting Context: Sometimes the fault isn't detected during the reboot
because latent diagnostic tasks elicit the errors. The pattern Fool Me Once solves
this problem. And sometimes going through all the counter states isn't enough; see
the patterns Don't Trust Anyone and Analog Timer.

Rationale: The design is based on hardware module design failure rates (in
Failures in a trillion (FITs)) of the hardware modules. The pattern recalls the
extreme caution of first-generation developers of stored program control switching
systems.

This is a good pattern because:
●It solves a problem: Patterns capture
solutions, not just abstract principles or
strategies.

●It is a proven concept: Patterns capture
solutions with a track record, not theories or
speculation.

●The solution isn't obvious: Many problem-
solving techniques (such as software design
paradigms or methods) try to derive solutions
from first principles. The best patterns generate
a solution to a problem indirectly--a necessary
approach for the most difficult problems of
design.

●It describes a relationship: Patterns don't
just describe modules, but describe deeper
system structures and mechanisms.

●The pattern has a significant human
component (minimize human
intervention). All software serves human
comfort or quality of life; the best patterns
explicitly appeal to aesthetics and utility.

A pattern language defines a collection of
patterns and the rules to combine them
into an architectural style. Pattern
languages describe software frameworks
or families of related systems.

http://hillside.net/patterns/50-patterns-library/patterns/222-design-pattern-definition

July 2014Incubating Service Systems Thinking32 © 2014 David Ing

Pattern Language and Systems Thinking?

Source: Jim Coplien and Neil Harrison 2004. Organizational Patterns of Agile Software Development

A pattern doesn’t exist apart from a pattern
language; its first purpose is to establish
connections to other patterns in the language
([Alexander1977], p. xii). But to understand pattern
languages, you must first understand what a
pattern is. We know this is recursive, and to
understand recursion, you must first understand
recursion. We must start somewhere, and we start
here: with patterns.

Here is a short and necessarily incomplete
definition of a pattern:
A recurring structural configuration that solves a
problem in a context, contributing to the wholeness of
some whole, or system, that reflects some aesthetic or
cultural value.

Some of these aspects of pattern don’t
come out in the popular literature, and you
may not find them all in the same place in
Alexander’s definitions. But they are the
key elements of what makes a pattern a
pattern, and what makes it different from a
simple rule. A pattern is a rule: the word
configuration should be read as “a rule to
configure.” But it is more than just a rule; it
is a special kind of rule that contributes to
the overall structure of a system, that
works together with other patterns to
create emergent structure and behavior.
[p. 14]

Alexander believes that order in any system fundamentally depends on
the process used to build the system. This is why the fundamental
process is important (see the section PIECEMEAL GROWTH (6.2)).
It is important that each step preserves structure and
gradually adds local symmetries, and the organization
unfolds over time. It is step-by-step adaptation with
feedback. Simply following the pattern language doesn’t
give you a clue about how to handle the feedback. So
that’s why the fundamental process exists: to give
complete freedom to the design process to attack the
weakest part of the system, wherever it may be.
However, the fundamental process cannot work on a human scale
without some kind of cognitive guide that is built on experience and
which can foresee some of the centers that must be built. That’s what
patterns are: essential centers.

If unfolding is important, how do you know what order to unfold things?
The sequence is crucial. You want a smooth, structure-preserving
unfolding. It shouldn’t feel like “organizational design.”

So, what a sequence does is:
● Preserves structure;
● Keeps you doing one thing at a time;
● Takes the whole organization into account at each step;
● May be repeated tens of thousands of times.

Sequences take you into unpredictability, and into
circumstances you handle with feedback, always in the
context of the whole organization. Sequences are where
generativity comes from. [p. 37]

July 2014Incubating Service Systems Thinking33 © 2014 David Ing

Ulrich (2006) The Art of Observation:
Understanding Pattern Languages

Source: Werner Ulrich 2006, “The Art of Observation: Understanding Pattern Languages”, Journal of Research Practice, v2, n1, aritlce R1
http://jrp.icaap.org/index.php/jrp/article/view/26/46

1. The Quality without a Name
… the essence of the Quality without a Name consists in
the idea of design patterns that are alive and which, if
identified in sufficient number, can be used to make up a
whole pattern language for quality design.

2. Patterns that are Alive
As a rule, a room that does not have a window place
lacks quality; its windows are just holes in the wall.

3. The Idea of a “Pattern Language”
… patterns are not arbitrary design ideas but can and
need to be identified and verified through careful
observation. Furthermore, patterns become meaningful
only within a hierarchy of interdependent patterns, in
which each pattern helps to complete larger (more
generic) patterns within which it is contained, and in turn
is further completed by smaller (more specific) patterns
that it contains.

4. Against Modular Architecture
The way a pattern language works is not through a
process of addition or combination of preformed parts of a
design, but through a sequential process of unfolding, in
which each pattern is developed in the context of the
whole that is given by previously unfolded patterns ...
Design thus resembles more the evolution of an embryo
than the drawing of an architectural plan. It is a process of
growth--of increasing differentiation--with the pattern
language operating as its genetic code. No application of
a pattern will ever generate exactly the same result, for
the result depends on the context generated by the
previous stages of growth. This is different from
conventional architectural design, in which the details of a
building are made from identical, modular parts (e.g.,
prefabricated windows).

http://jrp.icaap.org/index.php/jrp/article/view/26/46

July 2014Incubating Service Systems Thinking34 © 2014 David Ing

The Quality Without a Name

Source: Richard P. Gabriel 1996, Patterns of Software, http://dreamsongs.net/

Alexander’s search,
culminating in pattern
languages, was to find an
objective (rather than a
subjective) meaning for
beauty, for the aliveness
that certain buildings,
places, and human
activities have. The
objective meaning is the quality
without a name, and I believe
we cannot come to grips with
Alexander in the software
community unless we come to
grips with this concept. [….]

The quality is an objective
quality that things like buildings
and places can possess that
makes them good places or
beautiful places. Buildings and
towns with this quality are
habitable and alive. The key
point to this — and the
point that really sets
Alexander apart from his
contemporaries and stirs
philosophical debate—is
that the quality is objective.

It started in 1964 when he was doing a study for the Bay Area
Rapid Transit (BART) system …. One of the key ideas in this book
was that in a good design there must be an underlying
correspondence between the structure of the problem
and the structure of the solution — good design proceeds
by writing down the requirements, analyzing their
interactions on the basis of potential misfits, producing a
hierarchical decomposition of the parts, and piecing
together a structure whose structural hierarchy is the
exact counterpart of the functional hierarchy established
during the analysis of the program. (Alexander 1964)
Alexander was studying the system of forces surrounding a ticket
booth, and he and his group had written down 390 requirements
for what ought to be happening near it. Some of them pertained to
such things as being there to get tickets, being able to get change,
being able to move past people waiting in line to get tickets, and
not having to wait too long for tickets. What he noticed, though,
was that certain parts of the system were not subject
to these requirements and that the system itself
could become bogged down because these other
forces — forces not subject to control by
requirements—acted to come to their own balance
within the system. For example, if one person stopped and
another also stopped to talk with the first, congestion could build
up that would defeat the mechanisms designed to keep traffic flow
smooth. Of course there was a requirement that there not
be congestion, but there was nothing the designers could
do to prevent this by means of a designed mechanism.

Alexander
proposes some
words to
describe the
quality without a
name, but even
though he feels
they point the
reader in a
direction that
helps
comprehension,
these words
ultimately
confuse. The
words are
alive, whole,
comfortable,
free, exact,
egoless, and
eternal. I’ll go
through all of
them to try to
explain the
quality without a
name.

http://dreamsongs.net/

July 2014Incubating Service Systems Thinking35 © 2014 David Ing

SEBoK Patterns of Systems Thinking

Source: http://www.sebokwiki.org/wiki/Patterns_of_Systems_Thinking

http://www.sebokwiki.org/wiki/Patterns_of_Systems_Thinking

July 2014Incubating Service Systems Thinking36 © 2014 David Ing

Current applications of Pattern Languages

July 2014Incubating Service Systems Thinking37 © 2014 David Ing

Scrum Patterns Summary

Source: https://sites.google.com/a/scrumorgpatterns.com/www/scrumpatternssummary

https://sites.google.com/a/scrumorgpatterns.com/www/scrumpatternssummary

July 2014Incubating Service Systems Thinking38 © 2014 David Ing

Javier Garzás interview with Jim Coplien

Source: http://www.javiergarzas.com/en/2013/07/24/interview-to-jim-coplien-1/

I’m Product Owner for the Scrum Patterns effort, Scrum PLoP®
(http://www.scrumplop.org). It is, in some ways, an outgrowth of
the organizational patterns work that started 20 years ago
(http://orgpatterns.wikispaces.com). I’m proud of this work
because it is the only body I know of that is chartered as a non-
partisan group to evolve a rationalized definition of Scrum. [….]
There are three factors that make the Scrum Patterns special.

1. They adopt a systems thinking view of
organizational transformation, rather than a
rulebook approach. This means that we can get
beyond technique to organizational structure and
to principles and values, and really address the
human issues that make complex development so
hard. Patterns help us think in systems ways that
are more or less the opposite of “root cause
analysis.”

2. The Scrum Patterns are shaped by the thinking at the foundations of Scrum and written first-hand by those great thinkers: Jeff
Sutherland, Michael Beedle, Gabrielle Benefield, Jens Østergaard, and more.
3. They reflect input from all the major certifying entities, and where we lack engagement with key constituencies today we are
always seeking to be inclusive with more folks.

I think it’s important to understand that what we’re building isn’t just a pattern catalog. You shop by paging
through a catalog and choose one or two things to take home. We are building much more formal
constructs called pattern languages. Pattern languages include sets of rules that constrain meaningful
combinations of patterns according to a generative grammar, that can be used by the designer to
generate a myriad of wholes. What this means in layman’s terms is that we are building a roadmap that can inspire
organizations by showing them the many paths to building great Scrum teams. A pattern language requires judgment, insight, and
adaptation on the part of its users. Very few of the publications currently called “patterns” have this generative ability. However, the
inventor of patterns, Christopher Alexander, insists that this is an essential property of patterns. They compose with each other to
create “morphological wholes.” These Wholes are teams, value streams, relationships, cycles in time, and other structures in the
development organization. [….]
Most engineering students think in terms of short time frames; a good mature engineer thinks ahead to how use and nature will
cause a structure to weaken or become obsolete. Patterns attack that kind of entropy. Engineers building Japanese temples today
plant trees that will be used to build their successors 200 years from now; patterns in construction lay a foundation for a good future
by understanding the past.

http://www.javiergarzas.com/en/2013/07/24/interview-to-jim-coplien-1/

July 2014Incubating Service Systems Thinking39 © 2014 David Ing

Scrum Patterns Summary

Source: https://sites.google.com/a/scrumorgpatterns.com/www/scrumpatternssummary

https://sites.google.com/a/scrumorgpatterns.com/www/scrumpatternssummary

July 2014Incubating Service Systems Thinking40 © 2014 David Ing

Scrumplop

Source: https://sites.google.com/a/scrumplop.org/published-patterns/home/pattern-map

https://sites.google.com/a/scrumplop.org/published-patterns/home/pattern-map

July 2014Incubating Service Systems Thinking41 © 2014 David Ing

groupworksdeck.org

Source: http://groupworksdeck.org/what-we-mean-by-pattern

http://groupworksdeck.org/what-we-mean-by-pattern

July 2014Incubating Service Systems Thinking42 © 2014 David Ing

Group Works: A Pattern Language for
Bringing Life to Meetings and Other Gatherings

Source: http://groupworksdeck.org/patterns_by_category

http://groupworksdeck.org/patterns_by_category

July 2014Incubating Service Systems Thinking43 © 2014 David Ing

Public Sphere Project

Source: http://www.publicsphereproject.org/patterns/

July 2014Incubating Service Systems Thinking44 © 2014 David Ing

All patterns in the system are linked to each other into a network.
All patterns are intended to be used independently — and with other
patterns.

Source: http://www.publicsphereproject.org/patterns/

July 2014Incubating Service Systems Thinking45 © 2014 David Ing

Public Sphere Project

Source: http://www.publicsphereproject.org/patterns/

July 2014Incubating Service Systems Thinking46 © 2014 David Ing

Global Village Constructor Set Pattern Language

July 2014Incubating Service Systems Thinking47 © 2014 David Ing

Wiki was invented to support pattern language collaborations

July 2014Incubating Service Systems Thinking48 © 2014 David Ing

C2 Portland Pattern Repository → Hillside Group

July 2014Incubating Service Systems Thinking49 © 2014 David Ing

Design of inquiring systems: Ways of knowing (1, 2)

Source: Ian I. Mitroff, and Harold A. Linstone. 1993. The Unbounded Mind: Breaking the Chains of Traditional Business Thinking. Oxford U Press.

-

July 2014Incubating Service Systems Thinking50 © 2014 David Ing

Design of inquiring systems: Ways of knowing (3, 4)

Source: Ian I. Mitroff, and Harold A. Linstone. 1993. The Unbounded Mind: Breaking the Chains of Traditional Business Thinking. Oxford U Press.

-

July 2014Incubating Service Systems Thinking51 © 2014 David Ing

Design of inquiring systems: Ways of knowing (5)

Source: Ian I. Mitroff, and Harold A. Linstone. 1993. The Unbounded Mind: Breaking the Chains of Traditional Business Thinking. Oxford U Press.

-

July 2014Incubating Service Systems Thinking52 © 2014 David Ing

Agenda

1. Service Systems
Thinking, In Brief

2. Conversations for
Orientation

3. Conversations for
Possibilities

4. Conversations for
Action

5. Conversations for
Clarification

3.1 Multiple Perspectives Open Collaboration:
We could have federated
authored content on open
source platforms

3.2 Generative Pattern Language:

We could be reoriented for
unfolding wholeness, layering
systems of centers and/with
creating interactive value

3.3 SSMED: We could have trans-
disciplinary cooperation on
service systems improvement

3.4 Systems thinking: We could have
service systems evolving from
the systems thinking tradition

July 2014Incubating Service Systems Thinking53 © 2014 David Ing

Federated Authored Content

July 2014Incubating Service Systems Thinking54 © 2014 David Ing

Git and Github: Work Organization

Git is architected as decentralized, with an
origin from where individuals may push to and
pull from (as well as amongst each other).

This organization of work enables
individuals to first work independently, and
then subsequently discuss merging their
changes together.

Source: Vincent Driessen, “A successful Git branching model” January 05, 2010 at http://nvie.com/posts/a-successful-git-branching-model/

-

http://nvie.com/posts/a-successful-git-branching-model/

July 2014Incubating Service Systems Thinking55 © 2014 David Ing

Collaboration evolution as Fork-Join, and Branch-Merge

Source: David Ing, Open source with private source: coevolving architectures, styles and subworlds in business (forthcoming)

-

Fork

Branch Merge

Join

July 2014Incubating Service Systems Thinking56 © 2014 David Ing

Inductive-consensual Wiki revise-revert cycles become
Federated Wiki perspectives, branch-merge or fork

Source: Mitroff, Ian I., and Richard O. Mason. 1982. “Business Policy and Metaphysics: Some Philosophical Considerations.” The Academy of
Management Review 7 (3) (July 1): 361–371. doi:10.2307/257328. http://www.jstor.org/stable/257328.

-

Wiki as Inductive-Consensual (Federated) Wiki as Multiple Perspectives

wiki page
version

(t-1)

wiki page
version

(t)

wiki page
version

(t+1)

revise

revert

revise

revert

comment
A

comment
B

mainline
(t-1)

mainline
(t)

mainline
(t+1)

merge

branch

talk page
(t)

talk page
(t-1)

talk page
(t+1)

changeset
A (t-1)

accept?

changeset
B (t-1)

changeset
C (t-1)

fork
(t)

merge

changeset
A (t)

accept?

changeset
B (t)

changeset
C (t)

fork
(t+1)

July 2014Incubating Service Systems Thinking57 © 2014 David Ing

Federated Wiki

July 2014Incubating Service Systems Thinking58 © 2014 David Ing

Etherpad Lite

July 2014Incubating Service Systems Thinking59 © 2014 David Ing

The terms of contributions to a multi-organization, multi-person
project should be clear at the outset

Copyright Assignment and Ownership

There are three ways to handle copyright
ownership for free code and documentation
that were contributed to by many people.
The first is to ignore the issue of copyright entirely (I
don't recommend this).

The second is to collect a contributor
license agreement (CLA) from each person
who works on the project, explicitly granting
the project the right to use that person's
contributions. [...]
The third way is to get actual copyright
assignments from contributors, so that
the project (i.e., some legal entity, usually a
nonprofit) is the copyright owner for
everything. This is the most legally airtight
way, but it's also the most burdensome for
contributors; only a few projects insist on it.
Note that even under centralized copyright ownership,
the code remains free, because open source licenses
do not give the copyright holder the right to retroactively
proprietize all copies of the code....

The Open Source Definition
Introduction
Open source doesn't just mean access to the source code. The distribution terms
of open-source software must comply with the following criteria:

1. Free Redistribution
The license shall not restrict any party from selling or giving away the software as a
component of an aggregate software distribution containing programs from several
different sources. The license shall not require a royalty or other fee for such sale.

2. Source Code
The program must include source code, and must allow distribution in source code as well
as compiled form. [….]

3. Derived Works
The license must allow modifications and derived works, and must allow them to be
distributed under the same terms as the license of the original software.

4. Integrity of The Author's Source Code
The license must explicitly permit distribution of software built from modified source code.

5. No Discrimination Against Persons or Groups

6. No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the program in a specific field of
endeavor. For example, it may not restrict the program from being used in a business, or
from being used for genetic research.

7. Distribution of License

8. License Must Not Be Specific to a Product

9. License Must Not Restrict Other Software

10. License Must be Technology-Neutral

Source: Karl Fogel, Producing Open Source Software,
http://producingoss.com/en/copyright-assignment.html

-

Source: Open Source Initiative, “The Open Source Definition”,
http://opensource.org/osd

-

http://producingoss.com/en/copyright-assignment.html
http://opensource.org/osd

July 2014Incubating Service Systems Thinking60 © 2014 David Ing

Attribution of the source may be sufficient recognition

Choosing a License
Although there are many open source licenses [1],
the important ones can be divided into two
categories, and within each category only a few
licenses are in widespread use.

The “Anything Goes” Licenses
These place very few restrictions on what can be
done with the code, including using the code in
proprietary derivative works. They require only
attribution in a specified manner. The most widely-
used licences of this type are:

●BSD-style
●MIT/X11-style
●Apache Software License, version 2

The Copyleft (so-called “viral”) Licenses
These also allow open distribution, modification,
and re-use of the code (with attribution), but insist
that any derivative works be distributed under the
same terms. Thus proprietary derivatives by third
parties are not possible (unless the copyright
holder gives permission). Note, however, that
commercial use and derivation by anyone is
permitted, as long as the terms of the license are
honored. Widely-used licenses of this type are:

●GPLv3 (GNU General Public License, version 3)

●AGPLv3 (Affero GPL, version 3)

The MIT License (MIT)
Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Source: Civic Commons,
http://wiki.civiccommons.org/Choosing_a_License

-

Apache License, Version 2.0
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions. [….]

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license
to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this
section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work,....

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any
medium, with or without modifications, and in Source or Object form, provided that You meet the following
conditions: [….]

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License,
without any additional terms or conditions. [….]

http://wiki.civiccommons.org/Choosing_a_License

July 2014Incubating Service Systems Thinking61 © 2014 David Ing

The Apache Foundation incubation process might be adapted
for our needs, or compared to alternatives

Formulating a
Proposal
●Preparation
●Project Name
●Presentation
●Developing The
Proposal

●The Vote

Source: “A Guide To Proposal Creation”, Apache Software Foundation, http://incubator.apache.org/guides/proposal.html
http://incubator.apache.org/guides/proposal.htmlhttp://incubator.apache.org/guides/proposal.html

-

Proposal Template
●Abstract
●Proposal
●Background
●Rationale
●Initial Goals
●Current Status

● Meritocracy
● Community
● Core Developers
● Alignment

●Known Risks
● Orphaned products
● Inexperience with Open Source
● Homogenous Developers
● Reliance on Salaried

Developers
● Relationships with Other

Apache Products
● A Excessive Fascination with

the Apache Brand

●Documentation
●Initial Source
●Source and Intellectual Property
Submission Plan

●External Dependencies
●Cryptography
●Required Resources

● Mailing lists
● Subversion Directory
● Issue Tracking
● Other Resources

●Initial Committers
●Affiliations
●Sponsors

● Champion
● Nominated Mentors
● Sponsoring Entity

http://incubator.apache.org/guides/proposal.htmlhttp://incubator.apache.org/guides/proposal.html

July 2014Incubating Service Systems Thinking62 © 2014 David Ing

Unfolding Wholeness

July 2014Incubating Service Systems Thinking63 © 2014 David Ing

Generative Code, Morphogenesis

July 2014Incubating Service Systems Thinking64 © 2014 David Ing

Wholeness, Unfolding

July 2014Incubating Service Systems Thinking65 © 2014 David Ing

Patterns and Pattern Languages are ways to describe best
practices, good designs, and capture experience in a way
that it is possible for others to reuse this experience[1]

Problem
Give a statement of the problem that this pattern
resolves. The problem may be stated as a question.
Context
Describe the context of the problem.
Forces
Describe the forces influencing the problem and
solution. This can be represented as a list for clarity.
●Force one
●Force two
Solution
Give a statement of the solution to the problem.
Resulting Context
Describe the context of the solution.

Rationale
Explain the
rationale
behind the
solution.
Known Uses
List or
describe
places where
the pattern is
used.
Related
Patterns
List or
describe any
related
patterns.

Source: [1] “Patterns”, The Hillside Group, http://hillside.net/patterns ; [2] “Writing Patterns”, AG's HTML template at
http://hillside.net/index.php/ag-template ; “Canonical Form” (for writing patterns) at http://c2.com/cgi/wiki?CanonicalForm

-

Pattern
Name:
(Use italics
for pattern
names per
Meszaros).
Aliases:
(Aliases, or
none)

http://hillside.net/patterns
http://hillside.net/index.php/ag-template
http://c2.com/cgi/wiki?CanonicalForm

July 2014Incubating Service Systems Thinking66 © 2014 David Ing

Pattern Name: A name by which this problem/solution pairing can be referenced

Context
The circumstances in which
the problem is being solved
imposes constraints on the
solution. The context is often
described via a "situation"
rather than stated explicitly.

Here is a short and necessarily incomplete definition of a pattern:

A recurring structural configuration that solves a problem in a
context, contributing to the wholeness of some whole, or
system, that reflects some aesthetic or cultural value.[1]

Source: [1] Coplien, James O., and Neil B. Harrison. 2004. Organizational Patterns of Agile Software Development. Prentice-Hall, Inc.
http://books.google.ca/books?id=6K5QAAAAMAAJ . [2] Gerard Meszaros and Jim Doble, “A Pattern Language for Pattern Writing”, Pattern
Languages of Program Design (1997), http://hillside.net/index.php/a-pattern-language-for-pattern-writing

Problem
The specific problem that

needs to be solved.

Forces
The often contradictory considerations

that must be taken into account
when choosing a solution

to a problem.

Solution
The most appropriate solution to
a problem is the one that best resolves
the highest priority forces as determined
by the particular context.

Rationale
An explanation of why this

solution is most appropriate for
the stated problem within this

context.

Resulting
Context

The context that we
find ourselves in

after the pattern has
been applied. It can
include one or more

new problems
to solve

Related Patterns
The kinds of patterns include:
●Other solutions to the same problem,
●More general or (possibly domain) specific variations of the pattern,
●Patterns that solve some of the problems in the resulting context

(set up by this pattern)

http://books.google.ca/books?id=6K5QAAAAMAAJ
http://hillside.net/index.php/a-pattern-language-for-pattern-writing

July 2014Incubating Service Systems Thinking67 © 2014 David Ing

Writing Patterns

Source: http://www.martinfowler.com/articles/writingPatterns.html

Christopher Alexander
●(1) Picture with archetypal example
●(2) Paragraph sets context with how it helps to complete
larger patterns

●(3) Three diamonds (start of problem)
●(4) Headline essence of problem (bold type)
●(5) Body of problem, empirical background
●(6) Solution instructions (bold type) describing field of
physical and social relations

●(7) Diagram
●(8) Three diamonds (main body finished)
●(9) Paragraph that ties pattern to smaller patterns

Gang-of-Four
(Gamma, Helm,
Johnson, Vlissides
1994, Design
Patterns)
●Intent
●Motivation
●Applicability
●Structure
●Participants
●Collaborations
●Consequences
●Implementation
●Sample Code
●Known Uses
●Related Patterns

Portland
(C2 wiki, short)
●Problem
●… therefore ...
●Solution

Pattern-
Oriented
Software
Architecture
●Summary
●Example
●Context
●Problem
●Solution
●Structure
●Dynamics
●Implementation
●Example resolved
●Variants
●Known uses
●Consequences
●See also

Patterns of
Enterprise
Application
Architecture
●How it works
●When to use it
●Examples

http://www.martinfowler.com/articles/writingPatterns.html

July 2014Incubating Service Systems Thinking68 © 2014 David Ing

Design Patterns (Catalog)

Source: Erich Gamma,Richard Helm, Ralph Johnson, and John Vlissides.
1995. Design Patterns: Elements of Reusable Object-Oriented
Software. http://books.google.ca/books?id=6oHuKQe3TjQC .

Purpose Design Pattern Aspects That Can Vary

Creational Abstract Factory families of product objects

Builder how a composite object gets created

Factory Method subclass of object that is instantiated

Prototype class of object that is instantiated

Singleton the sole instance of a class

Structural Adapter interface to an object

Bridge implementation of an object

Composite structure and composition of an object

Decorator responsibilities of an object without subclassing

Facade interface to a subsystem

Flyweight storage cost of objects

Proxy how an object is accessed; its location

Behavioral Chain of
Responsibility

object that can fulfill a request

Command when and how a request is fulfilled

Interpreter grammar and interpretation of a language

Iterator how an aggregate's elements are
accessed, traversed

Mediator how and which objects interact with each
other

Memento what private information is stored outside
an object, and when

Observer number of objects that depend on another object;
how the dependent objects stay up to date

State states of an object

Strategy an algorithm

Template Method steps of an algorithm

Visitor operations that can be applied to object(s)
without changing their class(es)

http://books.google.ca/books?id=6oHuKQe3TjQC

July 2014Incubating Service Systems Thinking69 © 2014 David Ing

To appreciate service systems, can we aspire beyond a
(Design) Pattern Catalog to a Generative Pattern Language?

(Design) Pattern Catalog Generative Pattern Language

Pattern Name

Context

Problem Forces

Solution

Rationale

Resulting
Context

Related Patterns

SCOPE PURPOSE

Creational Structural Behavioral

Class Factory Method Adapter Interpreter
Template Method

Object Abstract Factory
Builder

Prototype
Singleton

Factory Method
Bridge

Composite
...

Chain of Responsibility
Command

Iterator
...

Centres
and
spaces,
in layers
and paces

Unfolding
wholeness
(+ interactive
value?)

July 2014Incubating Service Systems Thinking70 © 2014 David Ing

Transdisciplinary Cooperation on Service Systems Improvement

July 2014Incubating Service Systems Thinking71 © 2014 David Ing

Service system
entity

Appreciation of
value (implicit)

Value judgements
(weighed)

Outcomes

Commitments

Offerings

Could we model value constellation ontology
synthesizing iStar and OPM representations?

provider
signatory suppliers

customer
signatory

beneficiary
stakeholders

belief

hardgoal

task
goal

resource
goal

softgoal

object process
object process

object process

+ +

+

+

belief

hardgoal

task
goal

resource
goal

softgoal

+ +

+

+

belief

hardgoal

task
goal

resource
goal

softgoal

+ +

+

+

belief

hardgoal

task
goal

resource
goal

softgoal

+ +

+

+

D
D

D

D

D

Key: hardgoalbeliefactor boundary softgoal
task
goal

resource
goal object process

+
some +

+ve contribution
subgoal

task-goal decomp

strategic

dependency

D

July 2014Incubating Service Systems Thinking72 © 2014 David Ing

iStar Tools

July 2014Incubating Service Systems Thinking73 © 2014 David Ing

iStar

July 2014Incubating Service Systems Thinking74 © 2014 David Ing

Enterprise Systems Modeling Laboratory

July 2014 Incubating Service Systems Thinking 75

Object-Process Methodology (OPM)
Things: Objects and Processes

A thing that exists or might
exist physically or informatically

A thing that transforms one or
more objects

July 2014 Incubating Service Systems Thinking 76

Processes transform objects by

● (1) Consuming them:

July 2014 Incubating Service Systems Thinking 77

Processes transform objects by

● (2) Creating them:

July 2014 Incubating Service Systems Thinking 78

Processes transform objects by

● (3) Changing their state:

July 2014 Incubating Service Systems Thinking 79

So the OPM Things are:

● 1. Object
● 2. Process

●All the rest are relations between
things!

July 2014 Incubating Service Systems Thinking 80

Zooming into Baggage Handling

Time line: from the process
ellipse top to its bottom

July 2014 Incubating Service Systems Thinking 81

July 2014Incubating Service Systems Thinking82 © 2014 David Ing

Open systems (Emery and Trist), directive correlation (Sommerhoff)

2
(environment)

1
(system)

L
12

Planning
process

L
21

Learning from
environment

L
11

Internal
part-part
relations

L
22

Environment

 part-part
 relations

t
0

player sees ball

t
k

player kicks ball

end

Case (a): Action adapted to ball

Case (b): Ball is adapted to action

Ball
0

Action
k

Ball
k

Ball
k

Action
k
 Action

0

Goal

Goal

July 2014Incubating Service Systems Thinking83 © 2014 David Ing

The Causal Texture of Social Environments –
Extended fields of directive correlations (Emery and Trist)

Where
O = goals (goodies),
X = noxiants (baddes)

Elements
to know

Ideals Forms of
learning

Forms of
planning

Type I.
Random
Placid

Goals and noxiants randomly distributed.
Strategy is tactic. “Grab it if it's there”.
Largely theoretical of micro, design, e.g.
concentration camps, conditioning
experiments. Nature is not random.

system Homonomy
– sense of
belonging

conditioning tactics

Type 2.
Clustered
Placid

Goals and noxiants are lawfully distributed –
meaningful learning. Simple strategy –
maximize goals, e.g. use fire to produce new
grass. Most of human span spent in this
form. Hunting, gathering, small village.
What people mean by the “good old days”.

system,
action

Nurturance
– caring for

meaningful tactics /
strategies

Type 3.
Disturbed
Reactive

Type 2 with two or more systems of one kind
competing for the same resources.
Operational planning emerges to out-
manoeuvre the competition. Requires extra
knowledge of both Ss and E. E is stable so
start with a set of givens and concentrate on
problem solving for win-lose games. Need
to create insturments that are variety-
reducing (foolproof) – elements must be
standardized and interchangeable. Birth of
bureacractic structures where people are
redundant parts. Concentrate power at the
top – strrategy becomes a power game.

system,
action,
learning

Humanity –
in broadest
sense

problem
solving

tactics /
operational
strategies

Type 4.
Turbulent

Dynamic, not placid/stable. Planned change
in type 3 triggers off unexpected social
processes. Dynamism arises from the field
itself, creating unpredictability and
increasing relevant uncertainty and its
continuities. Linear planning impossible,
e.g. whaling disrupted reproduciton, people
react to being treated as parts of machine.
Birth of open systems thinking, ecology, and
catastrophe theory.

system,
action,
learning,
environment

Beauty –
includes
fitting
together
naturally

puzzle-
solving

active
adaptive
planning

O

X

O
X

O
X

O
X

O

X
O
?

O
O

X
O
X O

O

O

X

O

X O

O

XX
OX

O

?

.
.

July 2014Incubating Service Systems Thinking84 © 2014 David Ing

Social Systems Fields as three perspectives:
socio-psychological, socio-technical, socio-ecological

Socio-psychological Social-technical Socio-ecological

... in Institute projects,
the psychological
forces are are directed
towards the social field,
whereas in the the
Clinic, it is the other
way around [with social
forces directed toward
the psychological field].

[Trist & Murray 1997, p. 31]

... the best match between
the social and technical
systems of an
organization, since called
the principle of joint
optimization

... the second design
principle, the redundancy
of functions, as
contrasted with the
redundancy of parts.

[Trist & Murray 1997, p. 32]

... the context of the
increasing levels of
interdependence,
complexity and
uncertainty that
characterize societies a
the present time.

... new problems related
to emergent values
such as cooperation
and nurturance.

[Trist & Murray 1997, p. 33]

[... the] socio-psychological, the socio-technical and the socio-ecological
perspectives ... emerged from each other in relation to changes taking place in the
wider social environment. One could not have been forecast from the others.
Though interdependent, each has its own focus. Many of the more complex
projects require all three perspectives. [Trist & Murray 1997, p. 30]

July 2014Incubating Service Systems Thinking85 © 2014 David Ing

Can we build on Social Systems Science
towards a new Service Systems Science?

person

social
organization

machines

socio-psychological socio-technical

socio-ecological

contextual field

environment (for the system of interest)

beneficiary(ies), provider(s),
designer(s)

construction, deployment,
decommissioning

engagement (?) development (?)

enjoyment (?)

functionality, adaptability, sustainability

environment (for the system of interest)

commitments

offerings

customer
signatory

provider
signatory

Social Systems Science Perspectives Service Systems Science Perspectives (?)

July 2014Incubating Service Systems Thinking86 © 2014 David Ing

Design Thinking: Divergent-Convergent, Synthesis-Analysis

Design thinking is different and therefore
it feels different.
Firstly it is not only convergent. It is a
series of divergent and convergent
steps. During divergence we are
creating choices and during
convergence we are making choices.
For people who are looking to have a good sense of
the answer, or at least a previous example of one,
before they start divergence is frustrating. It almost
feels like you are going backwards and getting further
away from the answer but this is the essence of
creativity. Divergence needs to feel optimistic,
exploratory and experimental but it often feels foggy
to people who are more used to operating on a plan.
Divergence has to be supported by the culture.

The second difference is that design thinking relies
on an interplay between analysis and synthesis,
breaking problems apart and putting ideas
together. Synthesis is hard because we are trying
to put things together which are often in tension.
Less expensive, higher quality for instance. [….]

Designers have evolved visual ways to synthesize ideas and this is
another one of the obstacles for those new to design thinking; a

discomfort with visual thinking. A sketch of a new product
is a piece of synthesis. So is a scenario that tells a
story about an experience. A framework is a tool
for synthesis and design thinkers create visual
frameworks that in themselves describe spaces for
further creative thinking.

Source: Tim Brown “What does design thinking feel like?” Design Thinking (blog), Sept. 7, 2008 at http://designthinking.ideo.com/?p=51 ; “Why Social
Innovators Need Design Thinking”, Stanford Social Innovation Review, Nov. 15, 2011 at
http://www.ssireview.org/blog/entry/why_social_innovators_need_design_thinking .

-

http://designthinking.ideo.com/?p=51
http://www.ssireview.org/blog/entry/why_social_innovators_need_design_thinking

July 2014Incubating Service Systems Thinking87 © 2014 David Ing

Agenda

4.1 Seek concurrence
across professional
communities

4.2 Seek collaborating
authors on service
systems thinking

1. Service Systems
Thinking, In Brief

2. Conversations for
Orientation

3. Conversations for
Possibilities

4. Conversations for
Action

5. Conversations for
Clarification

July 2014Incubating Service Systems Thinking88 © 2014 David Ing

Seeking concurrence
●International Workshop,
January 2014, Los Angeles

●International Symposium,
June 2014, Las Vegas

●Human Side of Service Engineering,
July 2014, Krakow

●58th Annual Meeting, July 2014,
Washington, DC

●Pattern Languages of Programming
Conference,
September 2014, Allerton, IL

●Relating Systems Thinking and
Design Symposium,
October 2014, Oslo

July 2014Incubating Service Systems Thinking89 © 2014 David Ing

Agenda

5.1 Explore methods that
encourage multiple
perspectives inquiry

1. Service Systems
Thinking, In Brief

2. Conversations for
Orientation

3. Conversations for
Possibilities

4. Conversations for
Action

5. Conversations for
Clarification

July 2014Incubating Service Systems Thinking90 © 2014 David Ing

Strategic Assumption Surfacing and Testing

Source: Ian I.Mitroff and James R. Emshoff. 1979. “On Strategic Assumption-Making: A Dialectical Approach to Policy and Planning.” The Academy
of Management Review 4 (1) (January): 1. doi:10.2307/257398. http://dx.doi.org/10.2307/257398.

-

Original
Strategies

Data Assumptions

I. ASSUMPTION SPECIFICATION

Counter
Strategies

Data Assumption
Negation

II. DIALECTIC PHASE

Strategy
Pool

Data Assumption
Pool

III. ASSUMPTION INTEGRATION PHASE

“Best”
Strategy

Data Acceptable
Assumptions

IV. COMPOSITE STRATEGY CREATION

By working backwards to underlying
assumptions, the proposed process ... requires
that each strategy contain in addition to
supporting data a list of assumptions (i.e., given
conditions, events, or attributes that are or must
be taken as true) which implicitly underlie the
strategy.

... each assumption previously identified is
negated and reformulated as a counter-
assumption that negates the spirit of the original
statement. If the counter-assumption is
implausible, it is dropped. Those counter
assumptions which one can conceive of as
being true or plausible in some circumstances
are then examined individually and collectively
to see if they can be used as a basis both for
defining and deducing an entirely new strategy.

Instead of trying to resolve differences in
strategies directly at the resultant level of
strategy, the process concentrates on
negotiating an acceptable set of assumptions
that the decision makers are prepared to take
as given conditions for the formulation of the
problem.

… development operates on a more rational
basis as defined in traditional problem solving
and decision theory terms. The composite set of
acceptable assumptions can be used as an
explicit foundation upon which the problem can
be defined.

	Title Slide
	Agenda
	Agenda 1
	Intentional representation
	Service systems community
	Service systems exhibit
	Service systems thinking conversations
	Agenda 2
	Conversations for Orientation
	Perspective on wholes, parts, relations
	Synthesis precedes analysis
	Service systems in our society
	A service system can be defined as a dynamic configuration of resources
	Adding cost, creating own value
	SSMED Basic concepts
	SSMED Service systems worldview
	SSMED Basic questions
	Key concepts of value cocreation iStar
	Generative pattern language
	A Pattern Language Which Generates Multi-Service Centers
	Generative, Multi-Service Centers
	Summaries of 64 Patterns
	The Idea of a Pattern
	An evolution of pattern languages across domains
	Alexander: 127 Intimacy Gradient context, problem-empirical
	Alexander: 127 Intimacy Gradient context, solution
	127 High Order Pattern, Low Order Pattern
	Christopher Allen: Intimacy Gradient in social software design
	Hillside Group -- Design Patterns
	Hillside Group -- Software Patterns (Coplien)
	Example pattern -- Lucent Telecommunications product
	Pattern language and systems thinking?
	Werner Ulrich, JRP Understanding Pattern Languages
	Richard Gabriel, The Quality Without a Name
	SEBoK Patterns of Systems Thinking
	Current applications of pattern languages
	Scrum Patterns Summary diagram
	Interview with Jim Coplien, 2013
	Scrum Patterns Summary text
	Scrumplop Pattern Map
	Group Works, What we mean by pattern
	Group Works Deck, Patterns by Category
	Public Sphere Project, A Pattern Langauge for Communication Revolution
	Using a Network of Patterns
	Meaningful Maps, Earth's Vital Signs
	GVCS Pattern Language
	Wiki was invented to support pattern language collaborations
	C2 Portland Pattern Repository --> Hillside Group
	Design of inquiring systems: Ways of knowing 1,2
	Design of inquiring systems: Ways of knowing 3,4
	Design of inquiring systems: Ways of knowing 5
	Agenda 3
	Federated Authored Content
	Git and Github: Work Organization
	Collaboration evolution as Fork-Join, and Branch-Merge
	Revise-Revert; Branch-Merge, Fork
	Federated Wiki
	Etherpad Lite
	Copyright Assignment and Ownership; The Open Source Definition
	Choosing a License
	Apache Foundation incubation process
	Unfolding Wholeness
	Generative Code, Morphogenesis
	Wholeness, Unfolding
	Pattern Language Form: Coplien Canonical Form
	Pattern Language -- Coplien Canoncial Form, systems perspective
	Martin Fowler, Common Pattern Forms
	Design Patterns (Catalog)
	Pattern Language and Systems Thinking?
	Transdisciplinary Cooperation, Seek Concurrence
	Model value constellation OPM and iStar
	iStar Tools
	iStar wiki
	Enterprise Systems Modeling Laboratory
	OPM Objects and Processes
	Projects transform objects by Consuming them
	Processes transform objects by Creating Them
	Processes transform objects by Changing their state
	So the OPM Things are Object Process
	Zooming into Baggage Handling
	2012 PLOS
	Open systems, directive correlation
	Causal Textures
	Socio-psychological, socio-technical, socio-ecological
	Social Systems Thinking, Service Systems Thinking
	Design thinking, Divergent-Convergent, Synthesis-Analysis
	Agenda 4
	Seeking concurrence
	Agenda 5
	Strategic Assumption Surfacing and Testing

