Soft Systems Methodology

Presented by: Bohan Yang; Kaiyu Wang
In everyday life, we may face some problematical situations....

- A university may feel that its student intake is too biased towards students from middle-class homes. What are the implications of changing that?

- A local council may be receiving complaints that the delivery of its services is not sufficiently ‘citizen-friendly’. What should it do?

- A head teacher may wonder how to decide whether to take on the responsibility for providing school meals or to leave that function to the local education authority.
Bitcoin
Could be solved by...

➢ Appealing to previous experience
➢ Randomly thrashing about
➢ Responding emotionally

Or

Could be addressed by using SSM
What is SSM?

SSM is **Soft Systems Methodology**, it is an **action-oriented** process of inquiry into **problematical situations** in the everyday world.

Users **learn their way** from finding out about the situation to defining/taking action to **improve** it.

The learning emerges via an organized process in which the real situation is explored, using as intellectual devices – which serve to provide structure to discussion – models of **purposeful activity** built to encapsulate pure, stated **worldviews**.

---Peter Checkland & John Poulter
What will we usually do to evaluate a system

1. Conduct a BPMN or UML to evaluate the system sequence
2. Conduct a DFD analysis to evaluate the data flow
3. Conduct a i* model to evaluate the dependency relationship among different actors.

Hard System Thinking
What will we usually do to evaluate an industry or a company?

1. We will collect the data related to the industry
2. Conduct the analysis using the statistical models
3. Get a conclusion of the past and present performance, and give an estimation of the future operation.

Hard System Thinking
Systems Engineering (SE) is a process of naming a ‘system’, defining its objectives, and then using an array of techniques to ‘engineer’ the system to meet its objectives.

--- Peter Checkland & John Poulter

However, it was too thin...not rich enough to deal with social complexity

Systems Engineering ➔ Soft Systems Methodology
Soft Systems Approach

- Engineering approach can be inappropriate for ‘soft problems’ (with fuzzy requirements).

- Soft systems approaches (Soft Systems Methodology, Soft OR) assume:
 - organisational problems are ‘messy’ or poorly defined
 - stakeholders interpret problems differently (no objective reality)
 - human factors important
 - creative, intuitive approach to problem-solving
 - outcomes are learning, better understanding, rather than a ‘solution’

Hard Systems Approach

- Hard systems approaches (systems analysis (structured methods), systems engineering, operations research) assume:
 - Objective reality of systems in the world
 - Well-defined problem to be solved
 - Technical factors foremost
 - Scientific approach to problem-solving
 - An ideal solution

- More traditional way of viewing systems in Computing Science
What can SSM be used for?

➢ **Why widely used:**

The SSM is a process of learning your way through problematical situations.

This learning is organized and structured by using models of purposeful activity. The sheer generality of purposeful action makes the application area so huge.

➢ **SSM can be used in...**

Small/Large corporations; private/public sectors. Ex. National Health Service

SSM can also be used in information systems and information technology
SSM vs SE & others

SSM abandon the idea that the world is a set of systems.

The (social) world is taken to be very complex, problematical, mysterious, characterized by clashes of worldviews.

It is a methodology, not a method or way to solve problems.

There is no certain solution to a “problem”, however, there is an improvement on “problematical” situations.

A cycle of learning which goes from finding out about a problematical situation to defining/taking action to improve it

SE is an archetypal example of what is now known as ‘hard’ systems thinking.

Belief: the world contains interacting systems. They can be ‘engineered’ to achieve their objectives.

The belief also applies to other approaches.
Ex. the Viable System Model, the classic Operational Research...

Related problem could be solved within certain technical area

None of these approaches pay attention to the existence of conflicting worldviews.
How the ‘soft’ systems see the world...

Observer 1 (‘hard’)

Observer 2 (‘soft’)

Observer 1: ‘I spy systems which I can engineer.’

Observer 2: ‘I spy complexity and confusion; but I can organize exploration of it as a learning system.’

Fig. 5.4 The ‘hard’ and ‘soft’ systems stances
By introducing the term ‘worldviews’...

Fig. 5.2 The shift in thinking entailed in developing SSM
Soft System Methodology

1. The problem situation unstructured
2. The problem situation expressed
3. Root definitions of relevant systems
4. Develop conceptual models
5. Compare the conceptual model with the real world
6. If changes are arguably desirable and culturally feasible
7. Action to improve the problem situation
7 Stages of SSM

1. The problem situation: unstructured
2. The problem situation: expressed
3. Root definitions of relevant systems
4. Conceptual models
 - Formal system concept
 - Other systems thinking
5. Comparison of 4 with 2
6. Feasible, desirable changes
7. Action to improve the problem situation

Fig. 1. The seven stages of Checkland’s Soft System Methodology (from Checkland, 1981).
Fig. 5.9 The iconic representation of SSM’s learning cycle
1. The problem situation unstructured
2. The problem situation expressed

➢ The first thing to express:
 Why is a problem

➢ It is recommend to use affinity diagrams
The newly appointed head teacher of an 11s-to-18s school, which has overspent its budget in the last year or two, finds herself, in her first term, facing an issue concerning the provision of school meals. Currently these are provided by the county education authority through their catering services company, the contract being renewed annually. A member of that company who is leaving to set up her own catering company urges the head teacher to make a contract with her instead of the county, suggesting the school could save money on this. Some staff members agree with this, others want to stick with the status quo. Some parents, alerted by a national debate about school meals, want more nutritious meals as long as they don’t cost more. Pupils say: ‘We like burgers and chips.’ The school governors are discussing this issue; the Chairman, himself MD of a catering company, is urging the head teacher to be entrepreneurial and to take on responsibility for the provision of school meals, believing this could be profitable for the school.
Fig. 5.11 A rich picture of the situation described in the text
Rich picture

➢ The complexity of human situations is always one of multiple interacting relationships. A picture is a good way to show relationships.

➢ In making a Rich Picture the aim is to capture, informally, the main entities, structures and viewpoints in the situation, as well as the processes going on, the current and any potential issues.
Rich picture

➢ Structure
➢ Process
➢ Worries
➢ Use the language of those in the problem
➢ Use mostly figures, and little text

https://www.youtube.com/watch?v=39XSlzLuzKg
3. Root definition of relevant systems

(1) The PQR Formula
 Do P
 By Q
 In order to contribute
 to achieving R

(2) Root Definition
 provides a shape for
 enriches

(3) Mnemonic
 CATWOE
 Customers (victims, beneficiaries)
 Actors
 Transformation Process and Worldview
 Owners
 Environmental constraints

(4) Primary Task
 Issue-based
 may be

(5) Purposeful Activity Model
 monitored by criteria for
 Efficacy (E₁)
 Efficiency (E₂)
 Effectiveness (E₃)
 operations
 monitoring and control
The PQR Formula

Do P
By Q
In order to contribute to achieving R
CATWOE

• C: Clients [third step]
 Who are the victims or beneficiaries of T
• A: Actors [fourth step]
 Who make T possible
• T: Transformation process [first step]
 The conversion of input and output
• W: Weltanschauung (What is intended to achieve) [second step]
 The worldview which makes T meaningful in a context
• O: Owner [fifth step]
 Those who have the power to stop or to change T.
• E: Environmental constraints [sixth step]
 Internal and External constraints
A purposeful activity as a transforming process T based on worldview W

'owners' who could stop the process T

'customers' affected by T as victims or beneficiaries

'actors' who would do the activities which make up T

environmental constraints which are taken as given in doing T

CATWOE
Root Definition

- What is trying to Achieve W Weltanschauung
- How? T Transformations
- What constrains it? E Constraints

Horizon on Harbord Street
System that seeks to provide different types of gas to the customers, who lives near U of T or work at U of T in order to save their time; taking into account issues such as: demand budget, traffic situation, gasoline price, etc.
Let’s Play a Game
Kyrie, a first year international student in iSchool, was injured when playing basketball in the university’s division. Unfortunately, his ACL and meniscus has been torn. Even though most of the medical fee has been cover, he waited 2 months to get a MRI, and doctor said, he needs to wait for 4 months for surgery. In addition, he cannot get the best surgeon in Toronto area since the surgeon can only be referred by doctors.
How to improve health-care system in Canada fair?

(Think from different perspectives)
1. Draw a Rich Picture

Fig. 5.11 A rich picture of the situation described in the text
2. Conduct a root definition

(1) The PQR Formula
 Do P
 By Q
 In order to contribute
 to achieving R

 provides a shape for

(2) Root Definition

(3) Mnemonic
 CATWOE
 'Customers' (victims, beneficiaries)
 Actors
 Owners
 Environmental constraints

 Transformation Process and Worldview

 monitored by criteria for
 Efficacy (Ei)
 Efficiency (Ei)
 Effectiveness (Ei)

(4) may be
 Primary Task
 Issue-based

(5) Purposeful Activity Model
 leads to
 operations
 monitoring and control
4. Develop conceptual models

1. Assemble guidelines:
 - TandW
 - PQR
 - PT/IB
 - CATWOR, E1, E2, E3

2. Starting from T and W name the purposeful action as a transformation:

 Entity to be transformed → The transforming process (based on T, W) → Entity in a transformed state

 - Assemble a cluster of activities:
 - Related to the input
 - Related to the process
 - Related to the output

3. Structure the activities according to dependency of one on another

4. Add the monitoring and control activities

5. Check the mutual dependency of guidelines and model
Fig. 5.7 A simple example of an activity model: a system to paint the garden fence by hand painting.
5. Compare the conceptual model with the real world

Remember: The models are the devices which enable that discussion to be a structured rather than a random one.

Models as a source of questions to ask about the situation.

Several ways:

- Using flip charts on the wall (informal)
- Create a chart matrix (formal)
- Scenarios
5. Compare the conceptual model with the real world
7. Action to improve the problem situation

- Individuals have different genetic dispositions and experiences in the world.

- It is better to find an accommodation. That is to say they will have to find a version of the situation which they can all live with.
In summary...

Seven Principles

1. The idea ‘real-world problem’ is subsumed in the broader concept of ‘real-world problematical situation’.

2. All thinking and talking about problematical situations will be conditioned by the worldviews of people doing the thinking and talking.

3. Every real-world problematical situation will contain people trying to act purposefully.

4. Discussion and debate about such a situation can be structured by using the models in (3) as a source of questions to ask about the situation.
In summary...

Seven Principles

5. Acting to improve a real-world situation entails finding, in the course of discussion in (4), accommodations among different world-views.

6. The inquiry created by principles above is a never-ending process of learning. New situation will be created!

7. Explicit organization of the process which embodies principles above enables conscious critical reflection about both the situation itself and also about the thinking about it.
In summary...

Five Activities

1. Finding out about a problematical situation

2. Making models relevant to exploring it, based on different worldviews

3. Questioning the situation using the models (find desirable & feasible changes).

4. Taking action to change the situation in order to improve it.

5. Critical reflection on the whole process (from the 7th principle)
Five activities

Fig. 5.26 The five activities which flow from SSM’s seven principles
Repeat some core Ideas..

It does not seek ‘solutions’ which ‘solve’ real-world problems.

In the real world, things will be more complicated.

SSM focuses on the process of engaging with that complexity.

It is an organized process of thinking that enable groups of people to learn their way to taking ‘action to improve’.

SSM is a methodology, not a method or a way to solve problems.

THANK YOU