Coevolving Innovations

… in Business Organizations and Information Technologies

Types of learning, with panarchical change as (i) incremental, (ii) lurching, and (iii) transformational

In order to appreciate the influence of resilience science and panarchy on ongoing research into systems changes, revisiting foundational works sometimes resurfaces insights.  In the 2002 Panarchy book, Chapter 15 provides a summary of findings.

In the course of the project hat led to this volume, we identified twelve conclusions (Table 15-1) in our search for sustainable futures. Those conclusions are reviewed in this section. [p. 395]

Table 15-1. Summary Findings from the Assessment of Resilience in Ecosystems, Economies, and Institutions [p. 396]
Summary Statement Conclusion
Multistable states are common in many systems. 1. Abrupt shifts among a multiplicity of very different stable domains are plausible in regional ecosystems, some economic systems, and some political systems.
The adaptive cycle is the fundamental unit of dynamic change. 2. An adaptive cycle that aggregates resources and periodically restructures to create opportunities for innovation is a fundamental unit for understanding complex systems from cells to ecosystems to societies to cultures.
Not all adaptive cycles are the same, and some are maladaptive. 3. Variants to the adaptive cycle are present in different systems. These include physical systems with no internal storage, ecosystems strongly influenced by external pulses, and human systems with foresight and adaptive methods to stabilize variability. Some are maladaptive and trigger poverty and rigidity traps.
Sustainability requires both change and persistence. 4. Sustainability is maintained by relationships among a nested set of adaptive cycles arranged as a dynamic hierarchy in space and time-the panarchy.
Three types of learning can be identified. 6. Panarchies identity three types of change —  incremental, lurching, and transforming — each of which can generate a correspondingly different kind of learning.
The world is lumpy. 7. Attributes of biological and human entities form clumped patterns that reflect panarchical organization, create diversity, and contribute to resilience and sustainability.
Functional diversity builds resilience. 8. Functional groups across size classes of organisms maintain ecosystem resilience.
Tractability comes from a “Rule of Hand.” 9. Being as simple as possible, but no simpler than necessary leads to the “Rule of Hand.” Understanding a panarchy and its adaptive cycle requires a model of a least 3-5 key interacting components, 3 qualitatively different speeds, and nonlinear causation. Vulnerability and resilience of the system change with the slow variables. Spatial contagion and biotic legacies generate self-organized patterns over scales in space and time.
Systems of humans and nature can behave differently than their parts. 10. Linked ecological, economic, and social systems exhibit emergent behavior. The behavior is a result of strong connectivity between the human and ecological components and the presence of nonlinearity and complexity, as suggested in the “Rule of Hand.”
Management must cope with surprise and unpredictability. 11. Managing complex systems requires confronting multiple uncertainties. These can arise from technical consideration, such as model structure or analytic framework. The examples suggest that as much complexity exists in the social dimensions as in the ecological ones, and that managers must juggle shifting objectives.
Adaptive management outperforms other management approaches. 12. Slow variables, multistable behaviors, and stochasticity cause active adaptive management to outperform optimization approaches that seek stable targets.

From this Chapter 15, let’s focus on point 6, “Three types of learning can be identified”, that is unpacked further down in the paragraphs.

6. Panarchies identify three types of change — incremental, lurching, and transformational — each of which can generate a correspondingly different kind of learning.

Incremental change and learning. This type of change occurs in the predictable development phase or from the r to K phases of the adaptive cycle (Figure 2-1). During these phases, models or schemas are assumed to be correct, and learning is characterized by collecting data or information to update these models. This type of learning is similar to the single-loop learning of Argyris and Schon (1978). In bureaucratically dominated resource systems, the activity of learning is carried out largely by self-referential professionals or technocrats who primarily view dealing with this type of change and learning as problem solving (Chapter 13). [p. 404]

Abrupt change and spasmodic learning. This type of change is episodic, discontinuous, and surprising. It is created by slow-fast dynamics that reveal the inadequacies of the underlying model or schema structure. It is the change described by transitions from the conservation phase (K) through the creative destruction (Ω) and renewal (α) phases of the adaptive cycle. This can be manifested as an environmental crisis, where policy failure is undeniable (Gunderson et al. 1995a) and results from an environmental cognitive dissonance. In this case, the learning is described as double loop, in which the underlying model or schema is questioned and rejected (Argyris and Schon 1978). This is also characterized as problem reformation. In bureaucratic resource systems, this type of learning is facilitated by outside groups or charismatic integrators.  [pp. 404-405]

Transformational learning. This is the most dramatic type of change and requires the deepest type of learning. Cross-scale or novelty surprises characterize this type of change and are related to interaction between different sets of labile variables. In these cases, learning involves solving problems of identifying problem domains among sets of wicked and complex variables (Chapter 13). Transformational learning involves several levels in a panarchy, not simply one level. This is also described as evolutionary learning (Parson and Glark 1995), in which not just new models or schema are developed, but also new paradigmatic structures (sensu Kuhn 1962).  [p. 405]

[I had to look up the word “labile“.   It can mean “apt or likely to change”.]

To ensure that we understand changes in the context of panarchy, let’s refer back to Figure 2-1 (in Chapter 2).

Figure 2-1. A stylized representation of the four ecosystem functions (r, K, Ω, α) and the flow of events among them. The arrows show the speed of that flow in the cycle, where short, closely spaced arrows indicate a slowly changing situation and long arrows indicate a rapidly changing situation. The cycle reflects changes in two properties: (1) Y axis-the potential that is inherent in the accumulated resources of biomass and nutrients; (2) X axis-the degree of connectedness among controlling variables. Low connectedness is associated with diffuse elements loosely connected to each other whose behavior is dominated by outward relations and affected by outside variability. High connectedness is associated with aggregated elements whose behavior is dominated by inward relations among elements of the aggregates, relations that control or mediate the influence of external variability. The exit from the cycle indicated at the left of the figure suggests, in a stylized way, the stage where the potential can leak away and where a flip into a less productive and organized system is most likely.

So, the first two types of change show up more clearly in the diagram.

  • Incremental change and incremental learning are on the front loop upward arrows from r to K of the adaptive cycle.
  • Lurching (abrupt) change and spasmodic learning are on the back loop from the conservation phase (K) through the creative destruction (Ω) and renewal (α) phases of the adaptive cycle.

Understanding the third type of change at multipe scales leads us to look into Chapter 3.

The organization and functions we now see embracing biological, ecological, and human systems are therefore ones that contain a nested set of the four-phase adaptive cycles, in which opportunities for periodic reshuffling within levels maintain adaptive opportunity, and the simple interactions across levels maintain integrity. What distinguishes the biological, ecological, and human systems from one another is the way inventions are accumulated and transferred over time. [pp. 73-74]

[….]

Two features distinguish this panarchy representation from traditional hierarchical ones. The first, as discussed earlier, is the importance of the adaptive cycle and, in particular, the a. phase as the engine of variety and the generator of new experiments within each level. [….] [p. 74]

The second is the connections between levels. There are potentially multiple connections between phases at one level and phases at another level. But two are most significant in our search for the meaning of sustainability. Those are the connections labeled “Revolt” and “Remember” in Figure 3-10, where three levels of a panarchy are represented. The Revolt and Remember connections become important at times of change in the adaptive cycles. [p. 75]

Figure 3-10. Panarchical connections. Three selected levels of a panarchy are illustrated, to emphasize the two connections that are critical in creating and sustaining adaptive capability. One is the "revolt" connection, which can cause a critical change in one cycle to cascade up to a vulnerable stage in a larger and slower one. The other is the "remember" connection, which facilitates renewal by drawing on the potential that has been accumulated and stored in a larger, slower cycle. Examples of the sequence from small and fast, through larger and slower, to largest and slowest for ecosystems are shown in Table 3-1. For institutions, those three speeds might be operational rules, collective choice rules, and constitutional rules (Ostrom 1990; Chapter 5); for economies, individual preferences, markets, and social institutions (Whitaker 1987); for developing nations, markets, infrastructure, and governance (Barro 1997); for societies, allocation mechanisms, norms, and myths (Westley 1995, Chapter 4); for knowledge systems, local knowledge, management practice, and worldview (Gadgil et al. 1993; Berkes 1999; Chapter 5).

When a level in the panarchy enters its Ω phase of creative destruction and experiences a collapse, that collapse can cascade up to the next larger and slower level by triggering a crisis, particularly if that level is at the K phase, where resilience is low. The “Revolt” arrow suggests this effect — where fast and small events overwhelm slow and large ones. And that effect could cascade to still higher slower levels if those levels had accumulated vulnera- bilities and rigidities. [pp. 75-76]

Many novices see the adaptive loop in Chapter 2, and forget the cross-scale change in a smaller-faster connection cascading up as a revolt connection, and renewal facilitated by drawing on the larger-slower cycle in the remember connection.

Thus, making the tie back to Chapter 15, we have:

  • Transformational change and transformation learning as connections with smaller-faster cycles and larger-slower cycles.

Transformation can be differentiated for de novo creation, presuming that a larger and slower cycle has already been in place.  We could consider cases where prior knowledge and learning is ignored, in Chapter 5.

Figure 5-6 provides a conceptual model of possible responses to a crisis situation. For our purposes, the crisis may be broadly defined as a large perturbation; it may be human-made (e.g., a resource collapse) or natural (e.g., a hurricane). Three generic responses are possible when a crisis occurs.

  • “No effective response” is one possibility.
  • A second possibility is “response without experience,” in which the institution (a government agency or an informal local management institution, for example) responds to a crisis but does not have previously tested policies, with accumulated ecological knowledge, at its disposal.
  • A third possibility is “response with experience,” in which the institution has previous experience with a crisis of that kind and management policy that was used on previous occasions. [pp. 141-142, editorial paragraphing added]

Figure 5-6. Three generic responses to resource and environmental crisis. Most responses fall into categories of (1) ignoring a crisis, which can lead to larger-scale surprises; (2) reacting with no memory or experience; or (3) responding through learning.

In centralized and bureaucratized management systems, the “no effective response” is the management reaction that often characterizes “brittle” (as opposed to flexible) institutions (Holling 1986; Gunderson et al. 1995). Such a response allows the disturbance to accumulate up the panarchy; that is, it tends to create the conditions for a larger-scale crisis later on (Holling and Meffe 1996). The crisis can be both ecological and political; preserving the status quo politically often leads to organizational and political brittleness, as well as to ecological brittleness (Gunderson et al. 1995a). [p. 142]

“Response without experience” is a frequently seen reaction to crisis. It may result in a series of policy responses, including that of no effective response. Alternatively, it can lead to institutional learning or learning of the transformational type (Chapter 3). If the crisis is a true “surprise” (Holling 1986), then the institution will have no previous experience with it. Or the crisis may have been predictable but be of a magnitude that had never been experienced in that area.  [….]

If the memory of the experience provides a context for the modification of management policy and rules, the institution can act adaptively to deal with the crisis. The preferred response is to deal with the crisis while it is still a small disturbance at a lower level in the panarchy, and not a full-blown, higher-level crisis (Gunderson et al. 1995, 1997; Holling et al. 1998).

The mechanism for institutional learning, as for any learning, is trial and error. If this trial-and-error learning takes place as active learning (Hilborn 1992) and deliberately uses management policies as experiments from which to learn, then we have the basics of adaptive management (Holling 1978; Walters 1986; Lee 1993). [p. 143]

This view of panarchy is of social-ecological systems, where not only natural systems “learn” and remember”, but human systems can also “learn” and “remember”.  The larger and slower cycles can be retained either by elders or by institutions have experienced regime shifts multiple times within their lifetimes.

References

Holling, C. S., and Lance H Gunderson. 2002. “Resilience and Adaptive Cycles.” In Panarchy: Understanding Transformations in Human and Natural Systems (Chapter 2), edited by Lance H Gunderson and C.S. Holling, 25–62. Island Press.

Holling, C. S., Lance H Gunderson, and Garry D Peterson. 2002. “Sustainability and Panarchies.” In Panarchy: Understanding Transformations in Human and Natural Systems (Chapter 3), edited by Lance H Gunderson and C. S. Holling, 63–102. Island Press.

Berkes, Fikret, and Carl Folke. 2002. “Back to the Future: Ecosystem Dynamics and Local Knowledge.” In Panarchy: Understanding Transformations in Human and Natural Systems (Chapter 5), edited by Lance H. Gunderson and C.S. Holling, 121–46. Island Press.

Holling, C. S., Stephen R. Carpenter, William A Brock, and Lance H. Gunderson. 2002. “Discoveries for Sustainable Futures.” In Panarchy: Understanding Transformations in Human and Natural Systems, (Chapter 15) edited by Lance H. Gunderson and C. S. Holling, 395–417. Island Press.


Leave a Reply

Your email address will not be published. Required fields are marked *

  • RSS qoto.org/@daviding (Mastodon)

    • daviding: “Invited paper to International Conference on Socio-Technica…” August 15, 2024
      Invited paper to International Conference on Socio-Technical Perspectives in IS (STPIS’24) on Friday, Aug. 16, 2024, https://stpis.org/program/ online to Sweden. Preprint at https://coevolving.com/commons/2024-08-reifying-socio-technical-socio-ecological-stpis #SystemsThinking
    • daviding: “Web video from U. Hull Centre for Systems Studies expert-led…” August 11, 2024
      Web video from U. Hull Centre for Systems Studies expert-led session on "Resequencing #SystemsThinking: Practising, Theorizing and Philosophizing as Systems Changes Learning", 4 parts, ~ 3 hours. https://coevolving.com/blogs/index.php/archive/resequencing-systems-thinking-u-hull/ Slides at https://coevolving.com/commons/2024-05-resequencing-systems-thinking need talk, animation.
    • daviding: “Scholarly rankings of #SystemsThinkers may not line up with …” August 6, 2024
      Scholarly rankings of #SystemsThinkers may not line up with popularization. Counting h-index is different from number of citations. https://coevolving.com/blogs/index.php/archive/citation-rankings-for-some-systems-thinkers/
    • daviding: “Serious about a postcolonial philosophy of Chinese science? …” August 2, 2024
      Serious about a postcolonial philosophy of Chinese science? Web video of "Yinyang and Daojia into #SystemsThinking through Changes" for #EQLab traces through history + the contextural-dyadic shift for #SystemsChange https://coevolving.com/blogs/index.php/archive/yinyang-and-daojia-into-systems-thinking/
    • daviding: “If an LLM is going to run in your phone, the model is going …” July 31, 2024
      If an LLM is going to run in your phone, the model is going to have to be small. > Paradoxically, smaller models require more training to reach the same level of performance. So the downward pressure on model size is putting upward pressure on training compute. "AI scaling myths" | Arvind Narayanan + Sayish […]
  • RSS on IngBrief

    • World Hypotheses (Stephen C. Pepper) as a pluralist philosophy [Rescher, 1994]
      In trying to place the World Hypotheses work of Stephen C. Pepper (with multiple root metaphors), Nicholas Rescher provides a helpful positioning. — begin paste — Philosophical perspectivism maintains that substantive philosophical positions can be maintained only from a “perspective” of some sort. But what sort? Clearly different sorts of perspectives can be conceived of, […]
    • The Nature and Application of the Daodejing | Ames and Hall (2003)
      Ames and Hall (2003) provide some tips for those studyng the DaoDeJing.
    • Diachronic, diachrony
      Finding proper words to express system(s) change(s) can be a challenge. One alternative could be diachrony. The Oxford English dictionary provides two definitions for diachronic, the first one most generally related to time. (The second is linguistic method) diachronic ADJECTIVE Oxford English Dictionary, s.v. “diachronic (adj.), sense 1,” July 2023, https://doi.org/10.1093/OED/3691792233. For completeness, prochronic relates “to […]
    • Introduction, “Systems Thinking: Selected Readings, volume 2”, edited by F. E. Emery (1981)
      The selection of readings in the “Introduction” to Systems Thinking: Selected Readings, volume 2, Penguin (1981), edited by Fred E. Emery, reflects a turn from 1969 when a general systems theory was more fully entertained, towards an urgency towards changes in the world that were present in 1981. Systems thinking was again emphasized in contrast […]
    • Introduction, “Systems Thinking: Selected Readings”, edited by F. E. Emery (1969)
      In reviewing the original introduction for Systems Thinking: Selected Readings in the 1969 Penguin paperback, there’s a few threads that I only recognize, many years later. The tables of contents (disambiguating various editions) were previously listed as 1969, 1981 Emery, System Thinking: Selected Readings. — begin paste — Introduction In the selection of papers for this […]
    • Concerns with the way systems thinking is used in evaluation | Michael C. Jackson, OBE | 2023-02-27
      In a recording of the debate between Michael Quinn Patton and Michael C. Jackson on “Systems Concepts in Evaluation”, Patton referenced four concepts published in the “Principles for effective use of systems thinking in evaluation” (2018) by the Systems in Evaluation Topical Interest Group (SETIG) of the American Evaluation Society. The four concepts are: (i) […]
  • Recent Posts

  • Archives

  • RSS on daviding.com

    • 2024/08 Moments August 2024
      Summer finishing with family events, and lots of outdoor music performances, captured with a new mirrorless camera for video from mid-month
    • 2024/07 Moments July 2024
      Summer festivals and music incubator shows in Toronto, all within biking distance.
    • 2024/06 Moments June 2024
      Summer jazz at the Distillery District, in Washington DC while at the annual systems conference, and then Toronto Jazz Festival
    • 2024/05 Moments May 2024
      Busy May with art university graduate exhibition, travel to UK seeing Edinburgh, Hull, Manchester, London, returning home for wedding in Lefroy, annual cemetery visits with family, and spending time with extended family in from Chicago.
    • 2024/04 Moments April 2024
      Return from visiting family in Vancouver BC, clan events and eldercare appointments
    • 2024/03 Moments March 2024
      More work than play for first part of month, in anticipation of trip to Vancouver to visit family.
  • RSS on Media Queue

    • What to Do When It’s Too Late | David L. Hawk | 2024
      David L. Hawk (American management theorist, architect, and systems scientist) has been hosting a weekly television show broadcast on Bold Brave Tv from the New York area on Wednesdays 6pm ET, remotely from his home in Iowa. Live, callers can join…Read more ›
    • 2021/06/17 Keekok Lee | Philosophy of Chinese Medicine 2
      Following the first day lecture on Philosophy of Chinese Medicine 1 for the Global University for Sustainability, Keekok Lee continued on a second day on some topics: * Anatomy as structure; physiology as function (and process); * Process ontology, and thing ontology; * Qi ju as qi-in-concentrating mode, and qi san as qi-in-dissipsating mode; and […]
    • 2021/06/16 Keekok Lee | Philosophy of Chinese Medicine 1
      The philosophy of science underlying Classical Chinese Medicine, in this lecture by Keekok Lee, provides insights into ways in which systems change may be approached, in a process ontology in contrast to the thing ontology underlying Western BioMedicine. Read more ›
    • 2021/02/02 To Understand This Era, You Need to Think in Systems | Zeynep Tufekci with Ezra Klein | New York Times
      In conversation, @zeynep with @ezraklein reveal authentic #SystemsThinking in (i) appreciating that “science” is constructed by human collectives, (ii) the west orients towards individual outcomes rather than population levels; and (iii) there’s an over-emphasis on problems of the moment, and…Read more ›
    • 2019/04/09 Art as a discipline of inquiry | Tim Ingold (web video)
      In the question-answer period after the lecture, #TimIngold proposes art as a discipline of inquiry, rather than ethnography. This refers to his thinking On Human Correspondence. — begin paste — [75m26s question] I am curious to know what art, or…Read more ›
    • 2019/10/16 | “Bubbles, Golden Ages, and Tech Revolutions” | Carlota Perez
      How might our society show value for the long term, over the short term? Could we think about taxation over time, asks @carlotaprzperez in an interview: 92% for 1 day; 80% within 1 month; 50%-60% tax for 1 year; zero tax for 10 years.Read more ›
  • Meta

  • Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    Theme modified from DevDmBootstrap4 by Danny Machal