Coevolving Innovations

… in Business Organizations and Information Technologies

Hypotheses Concerning Living Systems | James Grier Miller

Towards a general theory of living systems, we should be looking beyond the singletons of a hierarchical level, i.e. (i) cell, (ii) organ, (iii) organism, (iv) group, (v) organization, (vi) community, (vii) society, and (viii) supranational level.

In a scientific approach, James Grier Miller created a list of hypotheses.  In the 1100+ page book, the hypotheses were not proved or disproved.  However, reviewing some of the hypotheses presents interesting questions as to whether an espoused systems thinker is actually sweeping in knowledge across multiple types of systems, or just reducing scope to a single system or type of system.

In this chapter I focus attention on hypotheses which apply to two or more levels of systems, because of their powerful generality. These are more than propositions of systems theory: they are general systems theoretical hypotheses. Several of the assertions I have made in my fundamental statement of general living systems theory in the preceding two chapters are, of course, cross-level hypotheses or propositions of this sort. Such, for instance, is the assertion that all living systems which survive have all the critical subsystems, or are parasitic upon or symbiotic with systems which do (see page 32).  [….]

Of the hypotheses stated below, some are probably true for all levels, some only for certain levels, some only if modified, and others are probably false. For some the question is: Is it true or false? For others the question is: Does it apply at a given level? [p. 90]

Miller does append a level of confidence to whether the hypothesis is true, or not.

A good many representative cross-level hypotheses are presented briefly below. Each is worth consideration for its own sake. My personal confidence that a given proposition could be shown to be true and relevant to two or more levels is indicated by a letter in parentheses after each hypotheses, as follows: (H) means it is high; (M) means medium; and (L) means low. [p. 92]

For a detailed explanation of each hypothesis, readers should consult the book directly.  The items that are most basic, and then somewhat interesting, follow.

On structure  (in section 1, that we can read as arrangement in space):

  • Hypothesis 1-1: In general, the more components a system has, the more echelons it has. (M)
  • Hypothesis 1-2: In general, the more structurally different types of members or components a system has, the more segregation of functions there is. (M)  [p. 92]

Those hypotheses, above, could be applied in a differentiation between complex structures (with multiple echelons) and complicated structures (of many components).

On process  (in section 2, that we can read as arrangement in time):

  • Hypothesis 2-1: System components incapable of associating, or lacking experience which has formed such associations, must function according to rigid programming or highly standardized operating rules. It follows that as turnover of components rises above the rate at which the components can develop the associations necessary for operation, rigidity of programming increases. (H)
  • Hypothesis 2-2: The more rapid reassignment of function from one component to another a long-surviving system has, the more likely are the components to be totipotential rather than partipotential. (M)
  • Hypothesis 2-3: The more isolated a system is, the more totipotential it must be. (H)
  • Hypothesis 2-4: A system’s processes are affected more by its suprasystem than by its suprasuprasystem or above, and by its subsystems than by its subsubsystems or below. (L)  [p. 92]

These hypotheses could be useful in distinguishing between a living system that has processes, multiple living systems that might be misrepresented as aggregated, and non-living systems.

Turning to subsystems (in section 3), there no hypotheses about the reproducer.  Either Miller thought that systems at different hierarchical levels reproduce in specific ways, or had not yet developed any testable hypotheses.

Relationships amongst subsystems or components (in section 4) has 3 hypothesis rated with low (L) confidence.  I’ll skip those.

Systems processes are in section 5.  I’ll skip over 5.1 (Process relationships between inputs and outputs) that are mostly about functioning within normal ranges.

Adjustment processes among subsystems or components, used in maintaining variables in steady states (in section 5.2) are more interesting.

  • Hypothesis 5.2-1: As stress increases, it first improves system output performance above ordinary levels and then worsens it. What is extreme stress for one subsystem may be only moderate stress for the total system. (L)
  • Hypothesis 5.2-2: The greater a threat or stress upon a system, the more components of it are involved in adjusting to it. When no further components with new adjustment processes are available, the system function collapses. (M)
  • Hypothesis 5.2-3: When variables in a system return to a steady state after stress, the rate of return and the strength of the restorative forces are functions — with increasing first derivatives greater than 1 — of the amount of displacement from the range of stability. (M)
  • Jypothesis 5.2-4: The range of stability of a system for a specific variable under lack strain is a monotonically increasing function of the amount of storage of the input,and under excess strain, it is a monotonically increasing function of the rate of output. (L)
  • Hypothesis 5.2-5: There is an inertia to the matter-energy and information processing variables which a system maintains in steady state, so that change in their ranges of stability is much less disruptive of system controls if it is undertaken gradually. (L)
  • Hypothesis 5.2-6: Positive feedback may produce continuous increments of outputs which give rise to “spiral effects” destroying one or more equilibria of a system. (H)
  • Hypothesis 5.2-7: When a barrier stands between a system under strain and a goal which can relieve that strain, the system ordinarily uses the adjustment processes of removing the barrier, circumventing it, or otherwise mastering it. If these efforts fail, less adaptive adjustments may be tried, including: (a) attacking the barrier by energic or informational transmissions; (b) displacing aggression to another innocent but more vulnerable nearby system; (c) reverting to primitive, nonadaptive behavior; (d) adopting rigid, nonadaptive behavior; and (e) escaping from the situation. (L) [p. 105-106]

These hypotheses, above, are all about how living systems handle stress and strain.

I will skip over some hypothesis on how multiple components work together, and then “17 hypotheses [related] to the adjustment of conflicts” that speak more to goals and purposes.

Also “Growth, cohesiveness, and integration” in section 5-4, I will skip

Pathology (in section 5.5) has two items:

  • Hypothesis 5.5-1: The farther away a component is from the point of trauma to a system , the less pathological is its function, and particularly the less is its relation to the system’s hierarchical organization destroyed. (L)
  • Hypothesis 5.5-2: Abnormal or “neurotic” outputs can be elicited by rewarding one information input, not rewarding (or punishing) a similar information input, and then altering one or both until they are indistinguishable. (L) [p. 110]

These pathologies remind us that Miller’s research was in behavioral science, as the science of psychology was on the rise, separate from medicine.

Decay and termination, as section 5.6 (the last, before Miller transitions on suggesting how researchers might proceed), says that when a system ceases to exist, it becomes part of the suprasystem.

  • Hypothesis 5.6-1: If a system’s negative feedback discontinues and is not restored by that system or by another on which it becomes parasitic or symbiotic, it decomposes into multiple components and its suprasystem assumes control of them. (H)

Having spent some time reading the writings of James Grier Miller, I might have missed a distinct distinction between a living system and a non-living system.  However, termination would suggest a living system that is no longer alive.

References

Miller, James Grier. 1978. “Hypotheses Concerning Living Systems.” In Living Systems, 89–119. McGraw-Hill.

1978_LivingSystems_Miller_Figure_1-1
Figure 1-1 A generalized living system interacting and intercommunicating with two others in its environment

 


Leave a Reply

Your email address will not be published. Required fields are marked *

  • RSS qoto.org/@daviding (Mastodon)

    • Oct 29, 2024, 21:05 October 29, 2024
      From late September into October, researchers met for 5 intensive days for #CreativeSystemicResearchPlatformInstitute Banathy Conversation event in Lugano. https://coevolving.com/blogs/index.php/archive/csrp-institute-2024-banathy-conversation-lugano/ #SystemsThinking
    • Sep 19, 2024, 03:50 September 19, 2024
      Web video of launch of book "Seeing: A Field Guide to the Patterns and Processes of Nature, Culture, and Consciousness" by #LynnRasmussen. Joined by #LauraCivitello of #MauiInstitute, making Systems Process Theory of #LenTroncale accessible. https://coevolving.com/blogs/index.php/archive/book-launch-seeing-a-field-guide_rasmussen-civitello/
    • Sep 14, 2024, 02:44 September 14, 2024
      Web video presentation complementing preprint of "Reifying Socio-Technical and Socio-Ecological Perspectives for Systems Changes: From rearranging objects to repacing rhythms" for International Conference on Socio-Technical Perspectives in IS (STPIS’24) https://coevolving.com/blogs/index.php/archive/reifying-socio-technical-and-socio-ecological-perspectives-for-systems-changes-stpis/
    • Aug 15, 2024, 03:04 August 15, 2024
      Invited paper to International Conference on Socio-Technical Perspectives in IS (STPIS’24) on Friday, Aug. 16, 2024, https://stpis.org/program/ online to Sweden. Preprint at https://coevolving.com/commons/2024-08-reifying-socio-technical-socio-ecological-stpis #SystemsThinking
    • Aug 11, 2024, 20:39 August 11, 2024
      Web video from U. Hull Centre for Systems Studies expert-led session on "Resequencing #SystemsThinking: Practising, Theorizing and Philosophizing as Systems Changes Learning", 4 parts, ~ 3 hours. https://coevolving.com/blogs/index.php/archive/resequencing-systems-thinking-u-hull/ Slides at https://coevolving.com/commons/2024-05-resequencing-systems-thinking need talk, animation.
  • RSS on IngBrief

    • Notion of Change in the Yijing | JeeLoo Lin 2017
      The appreciation of change is different in Western philosophy than in classical Chinese philosophy. JeeLoo Lin published a concise contrast on differences. Let me parse the Introduction to the journal article, that is so clearly written. The Chinese theory of time is built into a language that is tenseless. The Yijing (Book of Changes) there […]
    • World Hypotheses (Stephen C. Pepper) as a pluralist philosophy [Rescher, 1994]
      In trying to place the World Hypotheses work of Stephen C. Pepper (with multiple root metaphors), Nicholas Rescher provides a helpful positioning. — begin paste — Philosophical perspectivism maintains that substantive philosophical positions can be maintained only from a “perspective” of some sort. But what sort? Clearly different sorts of perspectives can be conceived of, […]
    • The Nature and Application of the Daodejing | Ames and Hall (2003)
      Ames and Hall (2003) provide some tips for those studyng the DaoDeJing.
    • Diachronic, diachrony
      Finding proper words to express system(s) change(s) can be a challenge. One alternative could be diachrony. The Oxford English dictionary provides two definitions for diachronic, the first one most generally related to time. (The second is linguistic method) diachronic ADJECTIVE Oxford English Dictionary, s.v. “diachronic (adj.), sense 1,” July 2023, https://doi.org/10.1093/OED/3691792233. For completeness, prochronic relates “to […]
    • Introduction, “Systems Thinking: Selected Readings, volume 2”, edited by F. E. Emery (1981)
      The selection of readings in the “Introduction” to Systems Thinking: Selected Readings, volume 2, Penguin (1981), edited by Fred E. Emery, reflects a turn from 1969 when a general systems theory was more fully entertained, towards an urgency towards changes in the world that were present in 1981. Systems thinking was again emphasized in contrast […]
    • Introduction, “Systems Thinking: Selected Readings”, edited by F. E. Emery (1969)
      In reviewing the original introduction for Systems Thinking: Selected Readings in the 1969 Penguin paperback, there’s a few threads that I only recognize, many years later. The tables of contents (disambiguating various editions) were previously listed as 1969, 1981 Emery, System Thinking: Selected Readings. — begin paste — Introduction In the selection of papers for this […]
  • Recent Posts

  • Archives

  • RSS on daviding.com

    • 2024/10 Moments October 2024
      Journey from Lugano Switzerland, return via Milan Italy, to fall in Toronto
    • 2024/09 Moments September 2024
      September neighbourhood music performances, day out with father, son's birthday party, travel via Milan to Genoa, systems conversation in Lugano
    • 2024/08 Moments August 2024
      Summer finishing with family events, and lots of outdoor music performances, captured with a new mirrorless camera for video from mid-month
    • 2024/07 Moments July 2024
      Summer festivals and music incubator shows in Toronto, all within biking distance.
    • 2024/06 Moments June 2024
      Summer jazz at the Distillery District, in Washington DC while at the annual systems conference, and then Toronto Jazz Festival
    • 2024/05 Moments May 2024
      Busy May with art university graduate exhibition, travel to UK seeing Edinburgh, Hull, Manchester, London, returning home for wedding in Lefroy, annual cemetery visits with family, and spending time with extended family in from Chicago.
  • RSS on Media Queue

    • What to Do When It’s Too Late | David L. Hawk | 2024
      David L. Hawk (American management theorist, architect, and systems scientist) has been hosting a weekly television show broadcast on Bold Brave Tv from the New York area on Wednesdays 6pm ET, remotely from his home in Iowa. Live, callers can join…Read more ›
    • 2021/06/17 Keekok Lee | Philosophy of Chinese Medicine 2
      Following the first day lecture on Philosophy of Chinese Medicine 1 for the Global University for Sustainability, Keekok Lee continued on a second day on some topics: * Anatomy as structure; physiology as function (and process); * Process ontology, and thing ontology; * Qi ju as qi-in-concentrating mode, and qi san as qi-in-dissipsating mode; and […]
    • 2021/06/16 Keekok Lee | Philosophy of Chinese Medicine 1
      The philosophy of science underlying Classical Chinese Medicine, in this lecture by Keekok Lee, provides insights into ways in which systems change may be approached, in a process ontology in contrast to the thing ontology underlying Western BioMedicine. Read more ›
    • 2021/02/02 To Understand This Era, You Need to Think in Systems | Zeynep Tufekci with Ezra Klein | New York Times
      In conversation, @zeynep with @ezraklein reveal authentic #SystemsThinking in (i) appreciating that “science” is constructed by human collectives, (ii) the west orients towards individual outcomes rather than population levels; and (iii) there’s an over-emphasis on problems of the moment, and…Read more ›
    • 2019/04/09 Art as a discipline of inquiry | Tim Ingold (web video)
      In the question-answer period after the lecture, #TimIngold proposes art as a discipline of inquiry, rather than ethnography. This refers to his thinking On Human Correspondence. — begin paste — [75m26s question] I am curious to know what art, or…Read more ›
    • 2019/10/16 | “Bubbles, Golden Ages, and Tech Revolutions” | Carlota Perez
      How might our society show value for the long term, over the short term? Could we think about taxation over time, asks @carlotaprzperez in an interview: 92% for 1 day; 80% within 1 month; 50%-60% tax for 1 year; zero tax for 10 years.Read more ›
  • Meta

  • Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    Theme modified from DevDmBootstrap4 by Danny Machal