Coevolving Innovations

… in Business Organizations and Information Technologies

Systems Thinking and Science, (Systems Thinking Ontario, 2013-01-17)

The inaugural meeting of Systems Thinking Ontario convened in the Lambert Lounge at OCAD U. on the evening of January 17.  The theme for the meeting was “Systems Thinking and Science”, with the focus question for the evening as: “Is the function of systems thinking to be (i) a science or (ii) a complement to science?”

The suggested pre-reading for the session was a rather old (1956) foundational article:

After a preamble on the role of Kenneth Boulding in the founding of the Society for General Systems Research (now known as the International Society for the Systems Sciences), some slides with the major points of the article were provided by attendees.

Towards a goal of organizing general systems theory, Boulding suggested two approaches:  (i) looking empirically for general phenomena across disciplines, and building up general theoretical models, or (ii) arranging the empirical fields into a hierarchy of complexity of organization, while trying to develop an abstraction appropriate to each.

Examples of the first approach included the interactions of populations, behaviours of individuals, growth, and communication and information processes.  Boulding saw that such an approach could lead to a general theory (of dynamics and interaction), but thought that this would be “a long way ahead”.

In the second approach, Boulding proposed a hierarchy of complexity — of (i) frameworks, (ii) clockworks, (iii) thermostat, (iv) cell, (v) plant, (vi) animal, (vii) human, (viii) social organization, and (ix) transcendental systems — that was more systematic.  This “system of systems” had the advantage of giving some idea of gaps in both theoretical and empirical knowledge.

Antony Upward served as the first commenter on the article.  His comments were framed in three parts:  (i) how far we’ve come (since 1956); (ii) how far we’ve got to go; and (iii) how much we’ve learned in the 60-plus years since Boulding published.

  • (i) From a 1956 article, there some foreshadowing of advances in science and in systems thinking:
    • Hints at idea of systems dynamics archetypes (top of p. 198) — Jay Forrester became a professor at the new MIT Sloan School of Management in 1956.
    • Hints at Kuhn’s ideas of development of science in fits and starts and the inertia of “normal” science (p. 198) — The Structure of Scientific Revolutions was published in 1962.
    • Hints at ideas of panarchy and attractors (p. 201) — with Panarchy published by Gunderson and Holling in 2001, and Strange Attractors published by Sprott in 1993.
    • Unsurprising (from our understanding today) of a very positivist orientation and conception of systems (p. 202) — Critical Systems Theory developed in Flood around 1990.
  • (ii) There’s still a long way to go:
    • There’s few people (and scientists) who think of systems in such a hierarchy
    • The existing normal science disciplines are even more fixed, rigid, and self-perpetuating
    • The need for problems to be solved through multi-disciplinarity, beyond bi-disciplinary (p.197, p.199) and ultimately trans-disciplinarity.
  • (iii) In 60-plus years, the domain of systems thinking has advanced in areas that Boulding would not have had language to describe:
    • e.g. non-equilibrium thermodynamics, panarchy, autopoesis, actor-network theory, abduction and retroduction, complexity science, etc.
    • A Pattern Language emerging in 1977 by Christopher Alexander  became popular in software development with the Hillside Group in 1993.

Allenna Leonard served as the second commenter, with ideas and additional pointers to references:

  • On Boulding:
    • The skeleton of science reveals gaps, especially where techniques from levels 1-3 can be applied to higher levels for improved (if partial) understanding.
      • One is the gap between pure mathematics (Queen of the Sciences) and applied content-level work.
      • I think of systems sciences as the “prime minister” of the sciences — getting its hands dirty, but still acting within various logical formulations and pursuing generalities and common themes and interests.
    • There is lots of interest in bringing systems science down to practicalities in the workplace, but this can be difficult because some theoretical understanding is needed, and most applications require customization.
    • Environmental issues came decades later.
  • William Gibson wrote a book titled Pattern Recognition. Very good as well as very apt.
  • A.L. (Pete) Becker was an ASC trustee who was a professor of linguistics at Michigan who specialized in Southeast Asian languages and the cultural resonances they shared. He gave a presentation about the ideographic languages and how they influenced how people thought according to their structure. He died several months ago.
  • Magorah Maruyama is probably best known for his work on mindscapes, and is well worth looking at.

To increase bandwidth on interpersonal communications, the large group them broke out into smaller discussion groups.  Reporters were asked to keep a few notes on the trail of their discussions.

di_20130117_195040_st-on_reporter

On behalf of his discussion team, Goran Matic reported:

  • We might be “scraping the surface” of systems thinking ,in terms of most of our everyday understanding of applicability – there might be much more depth to it
  • “So what?” and “What’s in it for me?”– in terms of allowing the theory to help us manage highly complex systems in everyday situations and challenges
  • Moving away from linearity towards the necessity of systems thinking
    • The problems of yesterday were arguably “cast” in terms of linearity, even though they might not have been so, necessarily
    • However, the issues of today are too large for this type of an approach, and are showing themselves more as systemic issues that they are
  • What tools do we need to have to help us to manage systems, and such systemic problems?
    • How do we “bridge the gap” between the theoretical and applicable?
  • “Re-configuring the relationships in the traditional societies”, as a method of going back to systems thinking approaches, in societies that were close to nature
    • Operational research started in WWII
    • “What was enemy going to do?”
    • Travelling salesman problem
  • A lot more density, interaction and interdependence in all of our lives
    • There is a lot more complexity – perhaps due to the fact that there is a lot more choice
    • And, everything is working a lot more quickly
  • Does this bring about a need for systems thinking?
    • Noone knows how to use it
    • “The more I know about it, the less I know what it is”
  • Hegel – not about things themselves, but about the relationships between them
  • It would be nice to have a case-study – systems perspective versus not
  • Qualitative vs. quantitative dynamic models might be an approach that is worth considering, in areas where we may not have all the data
    • The idea of looking at gaps
    • Stafford Beer’s pool: the “well and ill” people [from 1979, “In Search of Health” unpublished article, cited in by Allenna Leonard in “The Viable System Model and Its Application to Complex Organizations”, published in 2009, speech in 2007]
  • Systems thinking might perhaps become a new interdisciplinary “container” for science – since science is running the risk of “outgrowing” itself, and is in a need of a new connective paradigm

di_20130117_195123_st-on_report

In another group, Melissa Daly-Buajitti reported:

  • This might have been one of earliest discussions of what interdisciplinarity could be, laying out a view of what transdisciplinarity might look like, although the language didn’t yet exist
    • The two cultures, by C.P. Snow, came in 1959
    • Years later, we see universities trying to be interdisciplinary – seen as a necessity for getting things done
    • Each level allows us to study different wholes that are difficult to study as a while – our sciences aren’t structured to study wholes, but parts
  • Disciplines could build upon one another, either in a hierarchy or a map of systems
    • Did this fail because it’s too easy for the disciplines to see themselves individually?
  • Examples applying Boulding’s first approach:
  • You look for patterns – distributed cognition as a way of studying collaborative commons
    • Apply this to a study of ants
  • Abductive
    • A way of facilitating dependency
    • Macro theory of scientific change intimately wrapped up with abduction
    • As things become more complex, science can’t explain on its own
    • Roger Martin abduction in business [see “Management by Imagination“]
  • Retroductive
    • A way of back-casting: leaping ahead and looking back
    • Like abduction in macro
    • Competes with scientific method
  • We use induction when we create patterns
    • The disciplines enforce a methodology
    • Rationalize – we don’t know how to talk of abduction
    • The big questions don’t fit into a single discipline
    • But scholars must make their ideas fit into disciplines in order to obtain a degree and have their ideas published
  • Managing uncertainty
    • We will need to borrow a lot from all over
  • Critical pragmatism
  • Abduction framed as “informed guessing” – we don’t want this association
  • At page 201, Boulding calling out the gaps between levels
  • At each boundary there is a universal theory waiting to be discovered (not mainstream theories – they’ve been discovered but scientists don’t use them)
    • e.g. general theory of growth, panarchy
    • Living systems, social systems
    • Autopoeisis – self-organization (for cells through societies)
    • Non-equilibrium, thermodynamics

di_20130117_195131_st-on_discussion

Carl Hastrich was the reporter for the third discussion breakout group.  He’s incorporated some of their conversation into his reflections on “Beginning to Learn Systems Thinking” particularly on “normal versus post-normal science” and “hard systems versus soft systems”.

To extend the discussion, the formal meeting adjourned at 8:00 p.m. to a casual restaurant on Baldwin Street for continuing informal conversations.  Mixing up the group, we each had the opportunity to appreciate the contexts from which participants were coming, in their journey on systems thinking.

The format of System Thinking Ontario meetings will evolve from this first session.  The program, as designed, seemed workable.  Having a suggested a pre-reading and then opening with a summary review created a common context for the thinking (although some attendees missed the web links that pointed to where a softcopy of the reading might be found).  Having two commenters — loosely coupled, without prior coordination — opened up the discussion to the larger focus question.  The breakout discussion groups increased bandwidth for sensemaking.  Asking for volunteer reporters required a little arm-twisting, and should be less of a surprise in future sessions.  The desire for continuing conversation beyond the short breakout period was satisfied (for most) by adjourning to a quiet restaurant.  While the facilitators were prepared with flipchart and marker supplies, these proved unnecessary.  Convening the meeting in a large circle, breaking out to smaller circles, and then rejoining in the larger circle for sharing — without large scale visual aids — seemed natural.

The Systems Thinking Ontario meetings are being scheduled monthly.  The setting is adapted from Design with Dialogue practices, with more self-organization and less facilitation.  As more participants become comfortable with the styles and roles, it’s natural that the meeting will eventually fall into a regular pattern for sharing.

1 Comment

  • David:
    Thanks for sharing this work. Excellent dialogue. Will disseminate to continue the conversation virtually via other platforms.
    Mary


Leave a Reply

Your email address will not be published. Required fields are marked *

  • RSS qoto.org/@daviding (Mastodon)

    • daviding: “Web video from U. Hull Centre for Systems Studies expert-led…” August 11, 2024
      Web video from U. Hull Centre for Systems Studies expert-led session on "Resequencing #SystemsThinking: Practising, Theorizing and Philosophizing as Systems Changes Learning", 4 parts, ~ 3 hours. https://coevolving.com/blogs/index.php/archive/resequencing-systems-thinking-u-hull/ Slides at https://coevolving.com/commons/2024-05-resequencing-systems-thinking need talk, animation.
    • daviding: “Scholarly rankings of #SystemsThinkers may not line up with …” August 6, 2024
      Scholarly rankings of #SystemsThinkers may not line up with popularization. Counting h-index is different from number of citations. https://coevolving.com/blogs/index.php/archive/citation-rankings-for-some-systems-thinkers/
    • daviding: “Serious about a postcolonial philosophy of Chinese science? …” August 2, 2024
      Serious about a postcolonial philosophy of Chinese science? Web video of "Yinyang and Daojia into #SystemsThinking through Changes" for #EQLab traces through history + the contextural-dyadic shift for #SystemsChange https://coevolving.com/blogs/index.php/archive/yinyang-and-daojia-into-systems-thinking/
    • daviding: “If an LLM is going to run in your phone, the model is going …” July 31, 2024
      If an LLM is going to run in your phone, the model is going to have to be small. > Paradoxically, smaller models require more training to reach the same level of performance. So the downward pressure on model size is putting upward pressure on training compute. "AI scaling myths" | Arvind Narayanan + Sayish […]
    • daviding: “Running an open source LLM requires a lot of resources. The …” July 31, 2024
      Running an open source LLM requires a lot of resources. The smallest model may run on a powerful laptop, but beyond that, you'll need a server. Besides the GPU (probably Nvidia), check out the disk space requirement for Llama 3.1 8b parameters, 4.7GB70b parameters, 40GB405b parameters, 231GBhttps://ollama.com/library/llama3.1:70b
  • RSS on IngBrief

    • World Hypotheses (Stephen C. Pepper) as a pluralist philosophy [Rescher, 1994]
      In trying to place the World Hypotheses work of Stephen C. Pepper (with multiple root metaphors), Nicholas Rescher provides a helpful positioning. — begin paste — Philosophical perspectivism maintains that substantive philosophical positions can be maintained only from a “perspective” of some sort. But what sort? Clearly different sorts of perspectives can be conceived of, […]
    • The Nature and Application of the Daodejing | Ames and Hall (2003)
      Ames and Hall (2003) provide some tips for those studyng the DaoDeJing.
    • Diachronic, diachrony
      Finding proper words to express system(s) change(s) can be a challenge. One alternative could be diachrony. The Oxford English dictionary provides two definitions for diachronic, the first one most generally related to time. (The second is linguistic method) diachronic ADJECTIVE Oxford English Dictionary, s.v. “diachronic (adj.), sense 1,” July 2023, https://doi.org/10.1093/OED/3691792233. For completeness, prochronic relates “to […]
    • Introduction, “Systems Thinking: Selected Readings, volume 2”, edited by F. E. Emery (1981)
      The selection of readings in the “Introduction” to Systems Thinking: Selected Readings, volume 2, Penguin (1981), edited by Fred E. Emery, reflects a turn from 1969 when a general systems theory was more fully entertained, towards an urgency towards changes in the world that were present in 1981. Systems thinking was again emphasized in contrast […]
    • Introduction, “Systems Thinking: Selected Readings”, edited by F. E. Emery (1969)
      In reviewing the original introduction for Systems Thinking: Selected Readings in the 1969 Penguin paperback, there’s a few threads that I only recognize, many years later. The tables of contents (disambiguating various editions) were previously listed as 1969, 1981 Emery, System Thinking: Selected Readings. — begin paste — Introduction In the selection of papers for this […]
    • Concerns with the way systems thinking is used in evaluation | Michael C. Jackson, OBE | 2023-02-27
      In a recording of the debate between Michael Quinn Patton and Michael C. Jackson on “Systems Concepts in Evaluation”, Patton referenced four concepts published in the “Principles for effective use of systems thinking in evaluation” (2018) by the Systems in Evaluation Topical Interest Group (SETIG) of the American Evaluation Society. The four concepts are: (i) […]
  • Recent Posts

  • Archives

  • RSS on daviding.com

    • 2024/07 Moments July 2024
      Summer festivals and music incubator shows in Toronto, all within biking distance.
    • 2024/06 Moments June 2024
      Summer jazz at the Distillery District, in Washington DC while at the annual systems conference, and then Toronto Jazz Festival
    • 2024/05 Moments May 2024
      Busy May with art university graduate exhibition, travel to UK seeing Edinburgh, Hull, Manchester, London, returning home for wedding in Lefroy, annual cemetery visits with family, and spending time with extended family in from Chicago.
    • 2024/04 Moments April 2024
      Return from visiting family in Vancouver BC, clan events and eldercare appointments
    • 2024/03 Moments March 2024
      More work than play for first part of month, in anticipation of trip to Vancouver to visit family.
    • 2024/02 Moments February 2024
      Chinese New Year celebrations, both public and family, extended over two weekends, due to busy social schedules.
  • RSS on Media Queue

    • What to Do When It’s Too Late | David L. Hawk | 2024
      David L. Hawk (American management theorist, architect, and systems scientist) has been hosting a weekly television show broadcast on Bold Brave Tv from the New York area on Wednesdays 6pm ET, remotely from his home in Iowa. Live, callers can join…Read more ›
    • 2021/06/17 Keekok Lee | Philosophy of Chinese Medicine 2
      Following the first day lecture on Philosophy of Chinese Medicine 1 for the Global University for Sustainability, Keekok Lee continued on a second day on some topics: * Anatomy as structure; physiology as function (and process); * Process ontology, and thing ontology; * Qi ju as qi-in-concentrating mode, and qi san as qi-in-dissipsating mode; and […]
    • 2021/06/16 Keekok Lee | Philosophy of Chinese Medicine 1
      The philosophy of science underlying Classical Chinese Medicine, in this lecture by Keekok Lee, provides insights into ways in which systems change may be approached, in a process ontology in contrast to the thing ontology underlying Western BioMedicine. Read more ›
    • 2021/02/02 To Understand This Era, You Need to Think in Systems | Zeynep Tufekci with Ezra Klein | New York Times
      In conversation, @zeynep with @ezraklein reveal authentic #SystemsThinking in (i) appreciating that “science” is constructed by human collectives, (ii) the west orients towards individual outcomes rather than population levels; and (iii) there’s an over-emphasis on problems of the moment, and…Read more ›
    • 2019/04/09 Art as a discipline of inquiry | Tim Ingold (web video)
      In the question-answer period after the lecture, #TimIngold proposes art as a discipline of inquiry, rather than ethnography. This refers to his thinking On Human Correspondence. — begin paste — [75m26s question] I am curious to know what art, or…Read more ›
    • 2019/10/16 | “Bubbles, Golden Ages, and Tech Revolutions” | Carlota Perez
      How might our society show value for the long term, over the short term? Could we think about taxation over time, asks @carlotaprzperez in an interview: 92% for 1 day; 80% within 1 month; 50%-60% tax for 1 year; zero tax for 10 years.Read more ›
  • Meta

  • Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    Theme modified from DevDmBootstrap4 by Danny Machal