Coevolving Innovations

… in Business Organizations and Information Technologies

Currently Viewing Posts Tagged service sector

Talent in the (new) service economy: creative class occupations?

I had previously written that “the (new) service economy is not the same as the service sector“. There’s an deep problem in trying to define and measure something new, when we have to rely on government statistics that have an anchor point of 1980, 1971, or even 1945. Using old definitions doesn’t necessary invalidate the measurements, but is problem if we’re dealing with a paradigm shift in a scientific revolution.

In quantifying economic systems, many of the approaches take an output-oriented (i.e. GDP or value-added) approach. Another alternative is to take an input-oriented approach (i.e. labour). Looking into labour has brought me back to Richard Florida’s research. In The Rise of the Creative Class (2002) appears a breakdown of U.S. statistics that contrast to the three-sector view.

Appendix Table 1 Counting the Classes, 1999 [p. 330]1

Share Employees (OES data) Percent Share Employees (Emp. & Earnings data) Percent Share
Creative Class 38,278,110 30.0% 38,453,000 28.8%
  Super-Creative Core 14.932,420 11.7% 14,133,000 10.6%
  Other Creative Class 23.345,690 18.3% 24,320,000 18.2%
Working Class 33,238,810 26.1% 32.760,000 24.5%
Service Class 55,293,720 43.4% 58,837,000 44.1%
Agriculture 463,360 0.4% 3,426,000 2.6%
  Total 127,274,000   133,488,000  

Why does the view of occupations as super-creative core and other creative class matter? From The Flight of the Creative Class in 2004, creative class occupations are shown to drive disproportionate amounts of wealth generation in the U.S. (Their creative sector I’ll frame as “new” service economy occupations, to contrast from their service sector as traditional service economy occupations).

I had previously written that “the (new) service economy is not the same as the service sector“. There’s an deep problem in trying to define and measure something new, when we have to rely on government statistics that have an anchor point of 1980, 1971, or even 1945. Using old definitions doesn’t necessary invalidate the measurements, but is problem if we’re dealing with a paradigm shift in a scientific revolution.

In quantifying economic systems, many of the approaches take an output-oriented (i.e. GDP or value-added) approach. Another alternative is to take an input-oriented approach (i.e. labour). Looking into labour has brought me back to Richard Florida’s research. In The Rise of the Creative Class (2002) appears a breakdown of U.S. statistics that contrast to the three-sector view.

Appendix Table 1 Counting the Classes, 1999 [p. 330]1

Share Employees (OES data) Percent Share Employees (Emp. & Earnings data) Percent Share
Creative Class 38,278,110 30.0% 38,453,000 28.8%
  Super-Creative Core 14.932,420 11.7% 14,133,000 10.6%
  Other Creative Class 23.345,690 18.3% 24,320,000 18.2%
Working Class 33,238,810 26.1% 32.760,000 24.5%
Service Class 55,293,720 43.4% 58,837,000 44.1%
Agriculture 463,360 0.4% 3,426,000 2.6%
  Total 127,274,000   133,488,000  

Why does the view of occupations as super-creative core and other creative class matter? From The Flight of the Creative Class in 2004, creative class occupations are shown to drive disproportionate amounts of wealth generation in the U.S. (Their creative sector I’ll frame as “new” service economy occupations, to contrast from their service sector as traditional service economy occupations).

Science of service systems, service sector, service economy

As Service Science, Management and Engineering (SSME) has been developing, I’ve noticed a refinement of language. Rather than just abbreviating the long clause to service science, I’m now careful to use the phrase of a science of service systems, following Spohrer, Maglio et. al (2007). There’s a clear definition of service system in the final April 2008 revision of the report by the University of Cambridge Institute for Manufacturing.

What is a service system?
A service system can be defined as a dynamic configuration of resources (people, technology, organisations and shared information) that creates and delivers value between the provider and the customer through service. In many cases, a service system is a complex system in that configurations of resources interact in a non-linear way. Primary interactions take place at the interface between the provider and the customer. However, with the advent of ICT, customer-to-customer and supplier-to-supplier interactions have also become prevalent. These complex interactions create a system whose behaviour is difficult to explain and predict. [p. 6]

I’ve been sorting through the significance of this service system orientation, and have reached the following personal points-of-view.

  • 1. The definition of a service system as a system is earnest
  • 2. A service system creating and delivering value emphasizes a value constellation perspective over a value chain perspective
  • 3. Research into service systems is muddled in the ideas of coproduction and (value) cocreation
  • 4. A service system creates value with an offering as a platform for co-production
  • 5.
Read more (in a new tab)

As Service Science, Management and Engineering (SSME) has been developing, I’ve noticed a refinement of language. Rather than just abbreviating the long clause to service science, I’m now careful to use the phrase of a science of service systems, following Spohrer, Maglio et. al (2007). There’s a clear definition of service system in the final April 2008 revision of the report by the University of Cambridge Institute for Manufacturing.

What is a service system?
A service system can be defined as a dynamic configuration of resources (people, technology, organisations and shared information) that creates and delivers value between the provider and the customer through service. In many cases, a service system is a complex system in that configurations of resources interact in a non-linear way. Primary interactions take place at the interface between the provider and the customer. However, with the advent of ICT, customer-to-customer and supplier-to-supplier interactions have also become prevalent. These complex interactions create a system whose behaviour is difficult to explain and predict. [p. 6]

I’ve been sorting through the significance of this service system orientation, and have reached the following personal points-of-view.

  • 1. The definition of a service system as a system is earnest
  • 2. A service system creating and delivering value emphasizes a value constellation perspective over a value chain perspective
  • 3. Research into service systems is muddled in the ideas of coproduction and (value) cocreation
  • 4. A service system creates value with an offering as a platform for co-production
  • 5.
Read more (in a new tab)

ICT capital and the services sector in OECD reports

I happened to be looking at the 2007 OECD Science, Technology and Industry Scorecard, and noticed a chart on “Growth Accounts for OECD Countries”. I’ve never thought of a breakdown this way, so I was intrigued by the legend.

2007_OECD_ScienceTechnologyIndustryScoreboard_legend.jpg

We naturally think of labour inputs, and capital inputs, but I didn’t realize that there were statistics that break out ICT capital (in blue) from non-ICT capital (in orange). Information and Communications Technologies (ICT) isn’t something that Karl Marx specifically thought about. The OECD reports acknowledges that breaking economic growth down into factors of production is tricky thing.

Economic growth can be increased by increasing the amount and types of labour and capital used in production, and by attaining greater overall efficiency in how these factors of production are used together, i.e. higher multifactor productivity. Growth accounting involves breaking down growth of GDP into the contribution of labour input, capital input and MFP. The growth accounting model is based on the microeconomic theory of production and rests on a number of assumptions ….1

Assuming that we really can break down factors contributing to growth by labour, ICT capital, and non-ICT capital — as well as some multi-factor productivity that can’t be broken down — what does it look like? Look at the blue bar in the view of the G7 countries …

Contributions to GDP growth, G7 countries, 1995-2000 and 2000-05
(percentage points)

2007_OECD_ScienceTechnologyIndustryScoreboard_G7.jpg

I happened to be looking at the 2007 OECD Science, Technology and Industry Scorecard, and noticed a chart on “Growth Accounts for OECD Countries”. I’ve never thought of a breakdown this way, so I was intrigued by the legend.

2007_OECD_ScienceTechnologyIndustryScoreboard_legend.jpg

We naturally think of labour inputs, and capital inputs, but I didn’t realize that there were statistics that break out ICT capital (in blue) from non-ICT capital (in orange). Information and Communications Technologies (ICT) isn’t something that Karl Marx specifically thought about. The OECD reports acknowledges that breaking economic growth down into factors of production is tricky thing.

Economic growth can be increased by increasing the amount and types of labour and capital used in production, and by attaining greater overall efficiency in how these factors of production are used together, i.e. higher multifactor productivity. Growth accounting involves breaking down growth of GDP into the contribution of labour input, capital input and MFP. The growth accounting model is based on the microeconomic theory of production and rests on a number of assumptions ….1

Assuming that we really can break down factors contributing to growth by labour, ICT capital, and non-ICT capital — as well as some multi-factor productivity that can’t be broken down — what does it look like? Look at the blue bar in the view of the G7 countries …

Contributions to GDP growth, G7 countries, 1995-2000 and 2000-05
(percentage points)

2007_OECD_ScienceTechnologyIndustryScoreboard_G7.jpg

  • RSS qoto.org/@daviding (Mastodon)

  • RSS on IngBrief

    • The Nature and Application of the Daodejing | Ames and Hall (2003)
      Ames and Hall (2003) provide some tips for those studyng the DaoDeJing.
    • Diachronic, diachrony
      Finding proper words to express system(s) change(s) can be a challenge. One alternative could be diachrony. The Oxford English dictionary provides two definitions for diachronic, the first one most generally related to time. (The second is linguistic method) diachronic ADJECTIVE Oxford English Dictionary, s.v. “diachronic (adj.), sense 1,” July 2023, https://doi.org/10.1093/OED/3691792233. For completeness, prochronic relates “to […]
    • Introduction, “Systems Thinking: Selected Readings, volume 2”, edited by F. E. Emery (1981)
      The selection of readings in the “Introduction” to Systems Thinking: Selected Readings, volume 2, Penguin (1981), edited by Fred E. Emery, reflects a turn from 1969 when a general systems theory was more fully entertained, towards an urgency towards changes in the world that were present in 1981. Systems thinking was again emphasized in contrast […]
    • Introduction, “Systems Thinking: Selected Readings”, edited by F. E. Emery (1969)
      In reviewing the original introduction for Systems Thinking: Selected Readings in the 1969 Penguin paperback, there’s a few threads that I only recognize, many years later. The tables of contents (disambiguating various editions) were previously listed as 1969, 1981 Emery, System Thinking: Selected Readings. — begin paste — Introduction In the selection of papers for this […]
    • Concerns with the way systems thinking is used in evaluation | Michael C. Jackson, OBE | 2023-02-27
      In a recording of the debate between Michael Quinn Patton and Michael C. Jackson on “Systems Concepts in Evaluation”, Patton referenced four concepts published in the “Principles for effective use of systems thinking in evaluation” (2018) by the Systems in Evaluation Topical Interest Group (SETIG) of the American Evaluation Society. The four concepts are: (i) […]
    • Quality Criteria for Action Research | Herr, Anderson (2015)
      How might the quality of an action research initiative be evaluated? — begin paste — We have linked our five validity criteria (outcome, process, democratic, catalytic, and dialogic) to the goals of action research. Most traditions of action research agree on the following goals: (a) the generation of new knowledge, (b) the achievement of action-oriented […]
  • Recent Posts

  • Archives

  • RSS on daviding.com

    • 2024/06 Moments June 2024
      Summer jazz at the Distillery District, in Washington DC while at the annual systems conference, and then Toronto Jazz Festival
    • 2024/05 Moments May 2024
      Busy May with art university graduate exhibition, travel to UK seeing Edinburgh, Hull, Manchester, London, returning home for wedding in Lefroy, annual cemetery visits with family, and spending time with extended family in from Chicago.
    • 2024/04 Moments April 2024
      Return from visiting family in Vancouver BC, clan events and eldercare appointments
    • 2024/03 Moments March 2024
      More work than play for first part of month, in anticipation of trip to Vancouver to visit family.
    • 2024/02 Moments February 2024
      Chinese New Year celebrations, both public and family, extended over two weekends, due to busy social schedules.
    • 2024/01 Moments January 2024
      Hibernated with work for most of January, with more activity towards the end of month with warmer termperatures.
  • RSS on Media Queue

    • What to Do When It’s Too Late | David L. Hawk | 2024
      David L. Hawk (American management theorist, architect, and systems scientist) has been hosting a weekly television show broadcast on Bold Brave Tv from the New York area on Wednesdays 6pm ET, remotely from his home in Iowa. Live, callers can join…Read more ›
    • 2021/06/17 Keekok Lee | Philosophy of Chinese Medicine 2
      Following the first day lecture on Philosophy of Chinese Medicine 1 for the Global University for Sustainability, Keekok Lee continued on a second day on some topics: * Anatomy as structure; physiology as function (and process); * Process ontology, and thing ontology; * Qi ju as qi-in-concentrating mode, and qi san as qi-in-dissipsating mode; and […]
    • 2021/06/16 Keekok Lee | Philosophy of Chinese Medicine 1
      The philosophy of science underlying Classical Chinese Medicine, in this lecture by Keekok Lee, provides insights into ways in which systems change may be approached, in a process ontology in contrast to the thing ontology underlying Western BioMedicine. Read more ›
    • 2021/02/02 To Understand This Era, You Need to Think in Systems | Zeynep Tufekci with Ezra Klein | New York Times
      In conversation, @zeynep with @ezraklein reveal authentic #SystemsThinking in (i) appreciating that “science” is constructed by human collectives, (ii) the west orients towards individual outcomes rather than population levels; and (iii) there’s an over-emphasis on problems of the moment, and…Read more ›
    • 2019/04/09 Art as a discipline of inquiry | Tim Ingold (web video)
      In the question-answer period after the lecture, #TimIngold proposes art as a discipline of inquiry, rather than ethnography. This refers to his thinking On Human Correspondence. — begin paste — [75m26s question] I am curious to know what art, or…Read more ›
    • 2019/10/16 | “Bubbles, Golden Ages, and Tech Revolutions” | Carlota Perez
      How might our society show value for the long term, over the short term? Could we think about taxation over time, asks @carlotaprzperez in an interview: 92% for 1 day; 80% within 1 month; 50%-60% tax for 1 year; zero tax for 10 years.Read more ›
  • Meta

  • Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    Theme modified from DevDmBootstrap4 by Danny Machal