Coevolving Innovations

… in Business Organizations and Information Technologies

Currently Viewing Posts Tagged science

Intellectual virtues; architectural programming; agile delivery and action research

For a class on Service Science at the U. of Toronto iSchool Master of Information program,  Kelly Lyons granted me the luxury of 2 hours of time.  In a relatively small classroom, she asked me to enable more interaction with the students.  With an orientation more towards theory in service science, I decided to use the slides for “Service Systems Thinking: An Introduction” that I had presented earlier in the month in Finland, but to start in a different place.  Thus, the lecture began in part 6, with three topics:

  • 6.1 Intellectual virtues
  • 6.2 Architectural programming
  • 6.3 Agile delivery, action research

This discussion opened with science as episteme, techne and phronesis.  The context of architectural programming as problem seeking opened up a conversation about what researchers and practitioners are doing with service science.  Towards concreteness in methods, the transition from structured methods to agile development was compared with action research.

Here are audio recordings of the lecture, in two parts.  (Video is so much more work!)

Part 1 Audio [20151026_1830_UToronto_Ing_IntroServiceSystemsThinking_1.MP3]
(67MB, 1h09m57s)
Part 2 Audio [20151026_1950_UToronto_Ing_IntroServiceSystemsThinking_2.MP3]
(43MB, 44m47s)

After the philosophical introduction, circling back to the beginning of the slide deck placed more emphasis on understanding the perspective of bringing systems thinking into service science.  We then rolled through content that has been (or will be covered) in the course, from a different orientation.

In the audio, there’s some banter back and forth with Kelly Lyons, who has been active in service science since its beginning.  … Read more (in a new tab)

For a class on Service Science at the U. of Toronto iSchool Master of Information program,  Kelly Lyons granted me the luxury of 2 hours of time.  In a relatively small classroom, she asked me to enable more interaction with the students.  With an orientation more towards theory in service science, I decided to use the slides for “Service Systems Thinking: An Introduction” that I had presented earlier in the month in Finland, but to start in a different place.  Thus, the lecture began in part 6, with three topics:

  • 6.1 Intellectual virtues
  • 6.2 Architectural programming
  • 6.3 Agile delivery, action research

This discussion opened with science as episteme, techne and phronesis.  The context of architectural programming as problem seeking opened up a conversation about what researchers and practitioners are doing with service science.  Towards concreteness in methods, the transition from structured methods to agile development was compared with action research.

Here are audio recordings of the lecture, in two parts.  (Video is so much more work!)

Part 1 Audio [20151026_1830_UToronto_Ing_IntroServiceSystemsThinking_1.MP3]
(67MB, 1h09m57s)
Part 2 Audio [20151026_1950_UToronto_Ing_IntroServiceSystemsThinking_2.MP3]
(43MB, 44m47s)

After the philosophical introduction, circling back to the beginning of the slide deck placed more emphasis on understanding the perspective of bringing systems thinking into service science.  We then rolled through content that has been (or will be covered) in the course, from a different orientation.

In the audio, there’s some banter back and forth with Kelly Lyons, who has been active in service science since its beginning.  … Read more (in a new tab)

Science, systems thinking, and advances in theories, methods and practices

Post-2013 addendum:  Many of the ideas in this January 2012 blog post — particularly around episteme, techne and phronesis — were more formally published in October 2013 as “Rethinking Systems Thinking: Learning and Coevolving with the World”, in Systems Research and Behavioral Science. Please cite that article, rather than this preliminary blog post.

Commenting on the Overview of Systems Science (draft version 0.5) for the Guide to the Systems Engineering Book of Knowledge is problematic. Applying systems thinking on systems thinking constitutes a mess of ideas that is difficult to tease apart. Breaking the idea of “systems science” in its parts of (i) “systems” and (ii) “science” is reductive. The more compatible approach is to view “science” with a larger context of “systems thinking”.

I’ll attempt to shed some more light on concerns and perspectives in the following sections:

  • 1. The definition of science often tends towards disciplinarity; systems thinking aims for transdisciplinarity
  • 2. Science is part of thinking, which can be philosophically framed as episteme (know why), techne (know how) and phronesis (know when, know when, know whom)
  • 3. Domains of systems thinking can be categorized into systems theory, systems methods, and systems practice
  • 4. Incomplete systems thinking may suggest paths through which gaps may be filled
  • 5. Systems thinking has evolved with roots of linear causality, circular causality, complexity theory and reflexivity theory
  • 6. Opportunities to refresh ties between systems thinking and action science, theory of practice and social learning could be pursued

The discussion of science and systems thinking leads to perspectives at another level.… Read more (in a new tab)

Post-2013 addendum:  Many of the ideas in this January 2012 blog post — particularly around episteme, techne and phronesis — were more formally published in October 2013 as “Rethinking Systems Thinking: Learning and Coevolving with the World”, in Systems Research and Behavioral Science. Please cite that article, rather than this preliminary blog post.

Commenting on the Overview of Systems Science (draft version 0.5) for the Guide to the Systems Engineering Book of Knowledge is problematic. Applying systems thinking on systems thinking constitutes a mess of ideas that is difficult to tease apart. Breaking the idea of “systems science” in its parts of (i) “systems” and (ii) “science” is reductive. The more compatible approach is to view “science” with a larger context of “systems thinking”.

I’ll attempt to shed some more light on concerns and perspectives in the following sections:

  • 1. The definition of science often tends towards disciplinarity; systems thinking aims for transdisciplinarity
  • 2. Science is part of thinking, which can be philosophically framed as episteme (know why), techne (know how) and phronesis (know when, know when, know whom)
  • 3. Domains of systems thinking can be categorized into systems theory, systems methods, and systems practice
  • 4. Incomplete systems thinking may suggest paths through which gaps may be filled
  • 5. Systems thinking has evolved with roots of linear causality, circular causality, complexity theory and reflexivity theory
  • 6. Opportunities to refresh ties between systems thinking and action science, theory of practice and social learning could be pursued

The discussion of science and systems thinking leads to perspectives at another level.… Read more (in a new tab)

The Meta-design of Dialogues as Inquiring Systems

Dialogic design and systems thinking can be closely related, although not everyone appreciates the ties.  For the Design with Dialogue community, at the invitation of Peter Jones, we jointly organized a workshop based on some ideas that I had previously brought together in teaching in Finland.  I’ve posted the slides — both with builds and as printable — over on the Coevolving Commons.  For people who weren’t there, I can provide an outline of the activities of the three hours.

After introducing ourselves in the circle, and speaking about dialogues that each of us might be interested in pursuing, I provided an explanation of the Map of Ignorance, as described in the Curriculum on Medical Ignorance by Witte, Kerwin and Witte in the University of Arizona College of Medicine.  We walked through the interpretation of Unknown Knowns, Known Unknowns, and Errors.

Unknown unknowns raise questions about what might or might not be knowable.

Taboos and denials typically don’t enter a dialogue unless the facilitator ensures that they do.

Dialogic design and systems thinking can be closely related, although not everyone appreciates the ties.  For the Design with Dialogue community, at the invitation of Peter Jones, we jointly organized a workshop based on some ideas that I had previously brought together in teaching in Finland.  I’ve posted the slides — both with builds and as printable — over on the Coevolving Commons.  For people who weren’t there, I can provide an outline of the activities of the three hours.

After introducing ourselves in the circle, and speaking about dialogues that each of us might be interested in pursuing, I provided an explanation of the Map of Ignorance, as described in the Curriculum on Medical Ignorance by Witte, Kerwin and Witte in the University of Arizona College of Medicine.  We walked through the interpretation of Unknown Knowns, Known Unknowns, and Errors.

Unknown unknowns raise questions about what might or might not be knowable.

Taboos and denials typically don’t enter a dialogue unless the facilitator ensures that they do.

Conversations on an emerging science of service systems (IFSR Pernegg 2010)

Earlier this year, in April, the International Federation for Systems Research hosted its biannual research conversation, this time in Pernegg, Austria.  This meeting was a four-day opportunity to continue developing ideas on the emerging science of service systems begun in July 2009.

The proceedings from the meeting have now been published.  I’ve extracted the chapter for our team as a separate downloadable document.  The report starts with a description of our activities, and an outline of our progress.

The conversation began with self-reflections on personal experiences leading each of the individuals to the systems sciences, acknowledging the influence of those trajectories on their perspectives on service systems.  In recognition of this science of service systems as a potentially a new paradigm, much of the time together was spent in sensemaking about the intersection between ongoing services research and systems sciences perspectives.  This sensemaking led the team to focus the dialogue more on posing the right questions to clarify thinking broadly, as opposed to diving deeply towards solutions that would be tied up as issues within a problematique.

During the conversation, the progress on ideas was recorded on flipcharts.  Nearing the end of our time together, the team cut up the flipcharts with scissors, and collated the discussion threads into five clusters:  (i) philosophy; (ii) science; (iii) models; (iv) education; (v) development.  With service systems as a new domain, the team found all five clusters underdeveloped.  Recognizing that all five clusters are coevolving, the phenomenon of service systems was listed in order from the most concrete (i.e.

Read more (in a new tab)

Earlier this year, in April, the International Federation for Systems Research hosted its biannual research conversation, this time in Pernegg, Austria.  This meeting was a four-day opportunity to continue developing ideas on the emerging science of service systems begun in July 2009.

The proceedings from the meeting have now been published.  I’ve extracted the chapter for our team as a separate downloadable document.  The report starts with a description of our activities, and an outline of our progress.

The conversation began with self-reflections on personal experiences leading each of the individuals to the systems sciences, acknowledging the influence of those trajectories on their perspectives on service systems.  In recognition of this science of service systems as a potentially a new paradigm, much of the time together was spent in sensemaking about the intersection between ongoing services research and systems sciences perspectives.  This sensemaking led the team to focus the dialogue more on posing the right questions to clarify thinking broadly, as opposed to diving deeply towards solutions that would be tied up as issues within a problematique.

During the conversation, the progress on ideas was recorded on flipcharts.  Nearing the end of our time together, the team cut up the flipcharts with scissors, and collated the discussion threads into five clusters:  (i) philosophy; (ii) science; (iii) models; (iv) education; (v) development.  With service systems as a new domain, the team found all five clusters underdeveloped.  Recognizing that all five clusters are coevolving, the phenomenon of service systems was listed in order from the most concrete (i.e.

Read more (in a new tab)

Science of service systems, service sector, service economy

As Service Science, Management and Engineering (SSME) has been developing, I’ve noticed a refinement of language. Rather than just abbreviating the long clause to service science, I’m now careful to use the phrase of a science of service systems, following Spohrer, Maglio et. al (2007). There’s a clear definition of service system in the final April 2008 revision of the report by the University of Cambridge Institute for Manufacturing.

What is a service system?
A service system can be defined as a dynamic configuration of resources (people, technology, organisations and shared information) that creates and delivers value between the provider and the customer through service. In many cases, a service system is a complex system in that configurations of resources interact in a non-linear way. Primary interactions take place at the interface between the provider and the customer. However, with the advent of ICT, customer-to-customer and supplier-to-supplier interactions have also become prevalent. These complex interactions create a system whose behaviour is difficult to explain and predict. [p. 6]

I’ve been sorting through the significance of this service system orientation, and have reached the following personal points-of-view.

  • 1. The definition of a service system as a system is earnest
  • 2. A service system creating and delivering value emphasizes a value constellation perspective over a value chain perspective
  • 3. Research into service systems is muddled in the ideas of coproduction and (value) cocreation
  • 4. A service system creates value with an offering as a platform for co-production
  • 5.
Read more (in a new tab)

As Service Science, Management and Engineering (SSME) has been developing, I’ve noticed a refinement of language. Rather than just abbreviating the long clause to service science, I’m now careful to use the phrase of a science of service systems, following Spohrer, Maglio et. al (2007). There’s a clear definition of service system in the final April 2008 revision of the report by the University of Cambridge Institute for Manufacturing.

What is a service system?
A service system can be defined as a dynamic configuration of resources (people, technology, organisations and shared information) that creates and delivers value between the provider and the customer through service. In many cases, a service system is a complex system in that configurations of resources interact in a non-linear way. Primary interactions take place at the interface between the provider and the customer. However, with the advent of ICT, customer-to-customer and supplier-to-supplier interactions have also become prevalent. These complex interactions create a system whose behaviour is difficult to explain and predict. [p. 6]

I’ve been sorting through the significance of this service system orientation, and have reached the following personal points-of-view.

  • 1. The definition of a service system as a system is earnest
  • 2. A service system creating and delivering value emphasizes a value constellation perspective over a value chain perspective
  • 3. Research into service systems is muddled in the ideas of coproduction and (value) cocreation
  • 4. A service system creates value with an offering as a platform for co-production
  • 5.
Read more (in a new tab)
  • RSS qoto.org/@daviding (Mastodon)

    • daviding: “In the #anthropocene, humans can impact less.…” April 17, 2022
      In the #anthropocene, humans can impact less.> The report shows that Canada's economy can grow without increasing carbon emissions. The country's GDP grew 22 per cent between 2005 and 2020, but carbon emissions declined by 9.3 per cent over that period.https://www.cbc.ca/news/politics/climate-change-pandemic-emissions-canada-1.6420159
    • daviding: “With #CodeForCanada , a presentation + workshop guide for #C…” April 15, 2022
      With #CodeForCanada , a presentation + workshop guide for #CanadianDigitalService on "#SystemsThinking through Changes: An #ActionLearning guide" is available CC-BY-SA https://coevolving.com/blogs/index.php/archive/systems-thinking-through-changes/ . A milestone release by #SystemsChanges Learning Circle for practitioners, alongside publication in review
    • daviding: “When there is a larger threat from outside, attention is dra…” March 25, 2022
      When there is a larger threat from outside, attention is drawn away from internal struggles within. #RobertReich puts a historical perspective on current affairs in the USA. > Putin has brought a fractured Nato together. Maybe he’s bringing America back together too. It’s the thinnest of silver linings to the human disaster he’s creating, but […]
    • daviding: “For those who are critical about "design thinking", #KarelVr…” January 27, 2022
      For those who are critical about "design thinking", #KarelVredenburg makes the strong distinction between design and pseudo-design. https://www.karelvredenburg.com/home/2021/10/9/cr2h7dllvanrttb1tn8cfx1zjuhqol
    • daviding: “"Why Science Does Not Know: A Brief History of (the Notion o…” December 4, 2021
      "Why Science Does Not Know: A Brief History of (the Notion of) Scientific Ignorance in the Twentieth and Early Twenty-First Centuries" https://journalhistoryknowledge.org/articles/10.5334/jhk.40/?s=09
  • RSS on IngBrief

    • Book review of ZHANG, Zailin (2008) “Traditional Chinese Philosophy as the Philosophy of the Body” | Robin R. Wang | 2009
      In this review of a philosophical work written in Chinese, a comparison is made between Chinese philosophy centering on the body, in comparison to Western philosopy centered on the mind. (I found a reference to this book, tracing back from Keekok Lee (2017) Chapter 9, footnote 8.
    • Approche systémique
      The translation from English "systems thinking" to French "la pensée systémique" misses meaning. "Approche systémique" has lineage to "Conférences Macy", "General System Theory (Bertalanffy)" and "Gregory Bateson"
    • The Arrogance of Humanism (1978/1981) David W. Ehrenfeld
      When one chooses a guiding philosophy of life  -- and the modern world has chosen humanism -- one becomes responsible for all the consequences that flow from that choice. (David W. Ehrenfeld, 1981)
    • The evolution of service systems to service ecosystems | Brozović and Tregua 2022
      “Rethinking Systems Thinking” (2013) is cited by #DaniloBrozović (U. Skövde), #MarcoTregua (U. Napoli Federico II): The level of complexity in current service ecosystems is rising, not least due to technology (Barile et al., 2020), with the effect of such increased complexity of service ecosystems being perceived as ‘simple’. On the other hand, some systems researchers […]
    • 1995 Francois Jullien, The Propensity of Things
      Jullien views propensity in Chinese philosophy, as a counterpart to causality in Western philosophy.  Some unpacking of his writing in digests may be helpful. Jullien, François. 1995. The Propensity of Things: Toward a History of Efficacy in China. Translated by Janet Lloyd. Zone Books. Introduction How can we conceive of the dynamic in terms of the static, in […]
    • Reformation and transformation (Ackoff 2003, 2010)
      In his system of system concepts, Russell Ackoff made the distinction between reformation and transformation in many of his lectures. Here are two written sources. From Redesigining Society (2003) … Systemic Transformation A system is transformed, as contrasted with reformed, when its structure or functions are changed fundamentally. Such changes are discontinuous and qualitative, quantum […]
  • Recent Posts

  • Archives

  • RSS on daviding.com

    • 2022/04 Moments April 2022
      Spring sees art exhibitions opening up around Toronto, then a trip to the Bay Area in Northern California to visit family and friends.
    • 2022/03 Moments March 2022
      Emergence from hibernation at home, as winter gives way to spring
    • 2022/02 Moments February 2022
      Walking rather than bicycling in a colder winter this year, travel out of the neighbourhood by car.
    • 2022/01 Moments January 2022
      An indoor start to the year, with the combination of cold weather and pandemic restrictions coincident with writing a journal article to deadline at the end of the month.
    • 2021/12 Moments December 2021
      Shorter days with earlier sunsets, holiday season, and a trip via Vancouver, British Columbia, to visit with newlyweds in Oakland, California
    • 2021/11 Moments November 2021
      Academic research conferences in Brussels, visiting with friends, and sightseeing smaller towns in Belgium, as we've visited Brussels before.
  • RSS on Media Queue

  • Meta

  • Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    Theme modified from DevDmBootstrap4 by Danny Machal