Coevolving Innovations

… in Business Organizations and Information Technologies

Currently Viewing Posts Tagged learning

Rethinking Systems Thinking (article)

An article on “Rethinking Systems Thinking”, evolved from the ISSS San Jose 2012 plenary, is nearing publication.  The speech, as presented in fall 2012, covered a lot of content.  In written form, the narrative may be less colourful, but the citations may be easier to follow.

The peer-reviewed published article will be the definite source for scholars to cite.  For casual readers, a more widely accessible preprint version of the article, archived on the Coevolving Commons, may suffice.

An article on “Rethinking Systems Thinking”, evolved from the ISSS San Jose 2012 plenary, is nearing publication.  The speech, as presented in fall 2012, covered a lot of content.  In written form, the narrative may be less colourful, but the citations may be easier to follow.

The peer-reviewed published article will be the definite source for scholars to cite.  For casual readers, a more widely accessible preprint version of the article, archived on the Coevolving Commons, may suffice.

Full version: “Rethinking Systems Thinking: Learning and coevolving with the world”, Aalto University, 2012/11/26

A guest lecture on systems thinking for the Creativity Sustainability program at Aalto University provided an opportunity to stretch out on the plenary presentation that I had given at ISSS 2012.  In San Jose last July, plenary speakers (including myself) were constrained to 45 minute slots preceding dialectic panelists.  In Helsinki in November, the luxury of time allowed me to explain the ideas more fully.  The lecture took 85 minutes, and was then followed by a question and answer session.

Rehinking Systems Thinking

Versions of the web video can be viewed on Youtube, or viewed or downloaded at http://media.isss.org , at 480x272p, 720x400p, and 1280x720p.  The video shoot and post-production editing of the lecture was done by Seungho Lee, on behalf of the Creative Sustainability program.

The presentation on “Rethinking Systems Thinking” is probably the most comprehensive talk that I’ve given (and may ever give).  It is a personal perspective on systems, gained since the attending my first ISSS meeting in 1998 — that’s 14 years with the society.  My focus has recently shifted from the international audience to the local audience around Toronto, with Systems Thinking Ontario.  Systems thinking can be doled out in smaller chunks.  Over the Internet, viewers may choose to use the pause button.

A guest lecture on systems thinking for the Creativity Sustainability program at Aalto University provided an opportunity to stretch out on the plenary presentation that I had given at ISSS 2012.  In San Jose last July, plenary speakers (including myself) were constrained to 45 minute slots preceding dialectic panelists.  In Helsinki in November, the luxury of time allowed me to explain the ideas more fully.  The lecture took 85 minutes, and was then followed by a question and answer session.

Rehinking Systems Thinking

Versions of the web video can be viewed on Youtube, or viewed or downloaded at http://media.isss.org , at 480x272p, 720x400p, and 1280x720p.  The video shoot and post-production editing of the lecture was done by Seungho Lee, on behalf of the Creative Sustainability program.

The presentation on “Rethinking Systems Thinking” is probably the most comprehensive talk that I’ve given (and may ever give).  It is a personal perspective on systems, gained since the attending my first ISSS meeting in 1998 — that’s 14 years with the society.  My focus has recently shifted from the international audience to the local audience around Toronto, with Systems Thinking Ontario.  Systems thinking can be doled out in smaller chunks.  Over the Internet, viewers may choose to use the pause button.

Rethinking Systems Thinking: Learning and coevolving with the world

In a plenary dialectic session, I gave an address — in a position twinned with Rafael Ramirez — at the 56th Annual Meeting of the International Society for the Systems Sciences at San Jose State University.  There’s been ongoing discussion on the Systems Sciences group on Facebook, and on Twitter with the hashtag of #isss2012.

Here’s an abstract of the talk.

Much of systems thinking, as commonly espoused today, was developed by a generation in the context of the 1960s to 1980s. Almost all of the luminaries of that era have passed on. In the 2010s, has system thinking changed with the world in which it is to be applied? Is systems thinking learning and coevolving with the world? Some contemporary systems thinkers continue to push the frontiers of theory, methods and practice. Others situationally increment the traditions of their preferred gurus, where approaches proven successful in prior experiences are replicated for new circumstances. Founded on interactions with a variety of systems communities over the past 15 years, three ways to rethink systems thinking are proposed:

  1. Reorient systems thinking beyond “parts and wholes” towards “learning and coevolving”.
  2. Learn where the service economy and the anthropocene are new, anticipating deutero and trito levels.
  3. Coevolve the episteme, techne and phronesis across systems thinking, for both the living and non-living.

These proposed ways are neither exhaustive nor sufficient. The declaration that systems thinking should be rethought may itself be controversial. If, however, systems thinking is to be authentic, the theory, methods and practices with which we engage a changing world may require attention

The slides are available as a publication on the Coevolving Commons.  There will eventually be a published version of this content — abbreviated for journal length — and web video should be available on the ISSS web site after some light post-production work.  (The latter is a long-term project that was been deferred until I’m complete with the responsibilities of presidency of the society.  The torch passes at the end of this week.

[See the “Rethinking Systems Thinking: Learning and coevolving with the world” at http://coevolving.com/commons/20120716-rethinking-systems-thinking.  The original presentation version is available, as well as a printable version.]

In a plenary dialectic session, I gave an address — in a position twinned with Rafael Ramirez — at the 56th Annual Meeting of the International Society for the Systems Sciences at San Jose State University.  There’s been ongoing discussion on the Systems Sciences group on Facebook, and on Twitter with the hashtag of #isss2012.

Here’s an abstract of the talk.

Much of systems thinking, as commonly espoused today, was developed by a generation in the context of the 1960s to 1980s. Almost all of the luminaries of that era have passed on. In the 2010s, has system thinking changed with the world in which it is to be applied? Is systems thinking learning and coevolving with the world? Some contemporary systems thinkers continue to push the frontiers of theory, methods and practice. Others situationally increment the traditions of their preferred gurus, where approaches proven successful in prior experiences are replicated for new circumstances. Founded on interactions with a variety of systems communities over the past 15 years, three ways to rethink systems thinking are proposed:

  1. Reorient systems thinking beyond “parts and wholes” towards “learning and coevolving”.
  2. Learn where the service economy and the anthropocene are new, anticipating deutero and trito levels.
  3. Coevolve the episteme, techne and phronesis across systems thinking, for both the living and non-living.

These proposed ways are neither exhaustive nor sufficient. The declaration that systems thinking should be rethought may itself be controversial. If, however, systems thinking is to be authentic, the theory, methods and practices with which we engage a changing world may require attention

The slides are available as a publication on the Coevolving Commons.  There will eventually be a published version of this content — abbreviated for journal length — and web video should be available on the ISSS web site after some light post-production work.  (The latter is a long-term project that was been deferred until I’m complete with the responsibilities of presidency of the society.  The torch passes at the end of this week.

[See the “Rethinking Systems Thinking: Learning and coevolving with the world” at http://coevolving.com/commons/20120716-rethinking-systems-thinking.  The original presentation version is available, as well as a printable version.]

Systems thinking, systems that learn, and learning in service systems

Does systems thinking lead to systems that can learn as they evolve (or devolve)? How does a service system continue to learn about purposes (and objectives and goals) in its wholes and its parts? When a service system learns that change is called for, can that system consciously act to evolve (or devolve)?

Focusing on definitions of science and of systems thinking can lead to thinking about a static thing, rather than intellectual virtues that changes over time. Applying systems thinking to science, the intellectual virtues of episteme (know why), techne (know how) and phronesis (know when, know where, know whom) can each or all evolve. Actually, they coevolve, because the why, how, when, where and whom are all changing simultaneously.

Many of today’s services systems are under stress, possibly reaching a point of unsustainability. Does (or would) systems thinking help? To be concise, let’s try some responses to the three questions at the outset of this essay.

  • Does systems thinking lead to systems that can learn as they evolve (or devolve)?
    • A system in which systems thinking has contributed towards its design should have had features or properties included that are appropriate for its environment. If the environment changes, the fitness of the system may or may not degrade. A system intended for volatile environments may be have been designed to respond to change, or to fail — potentially gracefully — with signals that a more appropriate replacement should be put in place. The range of designs from fragile to “over-engineered” reflects different approaches to handling environmental change.
  • How does a service system continue to learn about purposes (and objectives and goals) in its wholes and its parts?
    • A service system — potentially socially constructed, and/or developed from natural resources — can be designed for its whole to serve both a collective (e.g. a community, a nation) and/or an individual. In addition, parts of that system may satisfy goals for others, as a byproduct. The wants and needs of service recipients may evolve, however.
  • When a service system learns that change is called for, can that system consciously act to evolve (or devolve)?
    • As the function provided by a system degrades or fails, the choices are either to (i) decommission the old service and start up a new service, or (ii) change the existing systems as it continues to operate. This latter choice requires a system that not only adapts to its environment, but also learns.

A service designed with systems thinking may have a productive lifespan that is short or long. Designing a service system that remains viable over a brief life cycle can be a challenge. Designing a service system that can learn and appropriately evolve with a highly variable environment is a bigger challenge.

In systems thinking, the idea of learning has been well developed. The remainder of this essay outlines some of the foundational appreciation on learning from systems research, and adds some recent theories coinciding with the practice turn in contemporary theory [Schatzki, Knorr-Cetina, von Savigny (2001)].

  • A. A system can maintain its purpose under constant conditions by adapting, and under changing conditions by learning.
  • B. Learning can typed at multiple levels: (1) change within a set of alternatives; (2) change in the set of alternatives; (3) change in the system of sets of alternatives; and (4) change in the development of systems of sets of alternatives.
  • C. Both physical systems and human systems can learn, if sufficient resources are reserved for long term maintenance.
  • D. In human systems, social participation is a process of learning and knowing that includes meaning, practice, community and identity

Systems thinking about systems thinking should include a greater emphais on design for learning. Each of the above assertions is supported in the sections that follow.

Does systems thinking lead to systems that can learn as they evolve (or devolve)? How does a service system continue to learn about purposes (and objectives and goals) in its wholes and its parts? When a service system learns that change is called for, can that system consciously act to evolve (or devolve)?

Focusing on definitions of science and of systems thinking can lead to thinking about a static thing, rather than intellectual virtues that changes over time. Applying systems thinking to science, the intellectual virtues of episteme (know why), techne (know how) and phronesis (know when, know where, know whom) can each or all evolve. Actually, they coevolve, because the why, how, when, where and whom are all changing simultaneously.

Many of today’s services systems are under stress, possibly reaching a point of unsustainability. Does (or would) systems thinking help? To be concise, let’s try some responses to the three questions at the outset of this essay.

  • Does systems thinking lead to systems that can learn as they evolve (or devolve)?
    • A system in which systems thinking has contributed towards its design should have had features or properties included that are appropriate for its environment. If the environment changes, the fitness of the system may or may not degrade. A system intended for volatile environments may be have been designed to respond to change, or to fail — potentially gracefully — with signals that a more appropriate replacement should be put in place. The range of designs from fragile to “over-engineered” reflects different approaches to handling environmental change.
  • How does a service system continue to learn about purposes (and objectives and goals) in its wholes and its parts?
    • A service system — potentially socially constructed, and/or developed from natural resources — can be designed for its whole to serve both a collective (e.g. a community, a nation) and/or an individual. In addition, parts of that system may satisfy goals for others, as a byproduct. The wants and needs of service recipients may evolve, however.
  • When a service system learns that change is called for, can that system consciously act to evolve (or devolve)?
    • As the function provided by a system degrades or fails, the choices are either to (i) decommission the old service and start up a new service, or (ii) change the existing systems as it continues to operate. This latter choice requires a system that not only adapts to its environment, but also learns.

A service designed with systems thinking may have a productive lifespan that is short or long. Designing a service system that remains viable over a brief life cycle can be a challenge. Designing a service system that can learn and appropriately evolve with a highly variable environment is a bigger challenge.

In systems thinking, the idea of learning has been well developed. The remainder of this essay outlines some of the foundational appreciation on learning from systems research, and adds some recent theories coinciding with the practice turn in contemporary theory [Schatzki, Knorr-Cetina, von Savigny (2001)].

  • A. A system can maintain its purpose under constant conditions by adapting, and under changing conditions by learning.
  • B. Learning can typed at multiple levels: (1) change within a set of alternatives; (2) change in the set of alternatives; (3) change in the system of sets of alternatives; and (4) change in the development of systems of sets of alternatives.
  • C. Both physical systems and human systems can learn, if sufficient resources are reserved for long term maintenance.
  • D. In human systems, social participation is a process of learning and knowing that includes meaning, practice, community and identity

Systems thinking about systems thinking should include a greater emphais on design for learning. Each of the above assertions is supported in the sections that follow.

  • RSS qoto.org/@daviding (Mastodon)

    • daviding: In an ecology of nat June 4, 2020
      In an ecology of nations, > “For the British and Canadians to say no publicly is highly unusual,” given their closeness to the United States, said Carl Bildt, the former Swedish prime minister. P.S. I am a Canadian. https://www.nytimes.com/2020/06/02/world/europe/trump-merkel-allies.html
    • daviding: Will this decade be May 27, 2020
      Will this decade be called the "Dark Twenties", in post-pandemic economic sociology? #JohnIbbitson writes: > It took years for Western economies to fully recover from the economic shock of 2008-09. This shock is far worse. How much worse? No one can be sure. [....] > We are entering the Dark Twenties. No one knows when […]
    • daviding: Moderating social me May 27, 2020
      Moderating social media context in an nuanced way may be done with a warning or caution, rather than by deleting the message or banning the individual. #HenryFarrell at #WashingtonPost analyzes fact-checking on POTUS. > Now, Twitter has done just this. Trump’s tweet has not been removed — but it has been placed behind a notice, […]
    • daviding: Our immune systems a May 26, 2020
      Our immune systems are complex, so improving resistance to disease may be puffery, writes #TimothyCaulfield . > I looked at how the phrase “boosting our immune system” is being represented on social media. This concept is everywhere right now: it is being pushed by .... But in reality, the immune system is fantastically complex and can’t be “boosted.” (Even […]
    • daviding: Ventures founded on May 17, 2020
      Ventures founded on growth maximization thinking unicorn might instead turn towards sustainability as camels. > Where Silicon Valley has been chasing unicorns (a colloquial term for startups with billion-dollar valuations), “camel” startups, such as those founded by leading global entrepreneurs, prioritize sustainability and resiliency.> The humble camel adapts to multiple climates, survives without food or […]
  • RSS on IngBrief

    • Wholism, reductionism (Francois, 2004)
      Proponents of #SystemsThinking often espouse holism to counter over-emphasis on reductionism. Reading some definitions from an encyclopedia positions one in the context of the other (François 2004).
    • It matters (word use)
      Saying “it doesn’t matter” or “it matters” is a common expression in everyday English. For scholarly work, I want to “keep using that word“, while ensuring it means what I want it to mean. The Oxford English Dictionary (third edition, March 2001) has three entries for “matter”. The first two entries for a noun. The […]
    • Systemic Change, Systematic Change, Systems Change (Reynolds, 2011)
      It's been challenging to find sources that specifically define two-word phrases -- i.e. "systemic change", "systematic change", "systems change" -- as opposed to loosely inferring reductively from one-word definitions in recombination. MartinReynolds @OpenUniversity clarifies uses of the phrases, with a critical eye into motives for choosing a specific label, as well as associated risks and […]
    • Environmental c.f. ecological (Francois, 2004; Allen, Giampietro Little 2003)
      The term "environmental" can be mixed up with "ecological", when the meanings are different. We can look at the encyclopedia definitions (François 2004), and then compare the two in terms of applied science (i.e. engineering with (#TimothyFHAllen @MarioGiampietro and #AmandaMLittle, 2003).
    • Christopher Alexander’s A Pattern Language: Analysing, Mapping and Classifying the Critical Response | Dawes and Ostwald | 2017
      While many outside of the field of architecture like the #ChristopherAlexander #PatternLanguage approach, it's not so well accepted by his peers. A summary of criticisms by #MichaelJDawes and #MichaelJOstwald @UNSWBuiltEnv is helpful in appreciating when the use of pattern language might be appropriate or not appropriate.
    • Field (system definitions, 2004, plus social)
      Systems thinking should include not only thinking about the system, but also its environment. Using the term "field" as the system of interest plus its influences leaves a lot of the world uncovered. From the multiple definitions in the International Encyclopedia of Systems and Cybernetics , there is variety of ways of understanding "field".
  • Recent Posts

  • Archives

  • RSS on daviding.com

    • 2020/05 Moments May 2020
      Life at home is much the same with the pandemic sheltering-in-place directives, touring city streets on bicycle, avoiding the parks on weekends.
    • 2020/04 Moments April 2020
      Living in social isolation in our house with 5 family members, finishing off teaching courses and taking courses.
    • 2020/03 Moments March 2020
      The month started with a hectic coincidence of events as both a teacher and student at two universities, abruptly shifting to low gear with government directives for social distancing.
    • 2020/02 Moments February 2020
      Winter has discouraged enjoying the outside, so more occasions for friend and family inside.
    • 2020/01 Moments January 2020
      Back to school, teaching and learning at 2 universities.
    • 2019/12 Moments December 2019
      First half of December in finishing up course assignments and preparing for exams; second half on 11-day family vacation in Mexico City.
  • RSS on Media Queue

  • Meta

  • Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    Theme modified from DevDmBootstrap4 by Danny Machal