Coevolving Innovations

… in Business Organizations and Information Technologies

Currently Viewing Posts Tagged systems-science

A Proposal for Collaboration on a Pattern Language for Service Systems

A meeting of systems scientists and systems engineers together as the Systems Science Working Group at the INCOSE International Workshop 2014 provided a forum for “a proposal for collaboration on a pattern language for service systems (science, management, engineering and design)”.  The title is deliberately long, and required some hours to unpack the content in the slide deck.

A Proposal for Collaboration on a Pattern Language for Service Systems (Science, Management, Engineering and Design)

The initiative has been presented as ambitious.  Writing a (good) pattern language is non-trivial.  The originator of the pattern language, Christopher Alexander, published his first work in 1968, and then spent 9 years in collaboration until the 1977 release of the landmark A Pattern Language: Towns, Building, Construction.  In a 2010 interview, Alexander was asked about his perception on similar efforts.

[Rob Hoskins]: What’s been your opinion of subsequent peoples’ attempts at doing Pattern Languages – I’ve seen a couple of different ones, have you seen many?

[Christopher Alexander]:  Some. They’re not that good. The reason I say that is that the people who’ve attempted to work with Pattern Languages, think about them, but are not conscious of the role of morphological elegance in the unfolding. In a biological case, they always are elegant and the unfolding morphology is a sort of magic. But it’s very simple.  It’s not as if it’s magic because it’s complicated, it’s just … like that.

[Rob Hoskins]:  I guess when we were talking before about how a Pattern Language goes from the large down to the small, maybe when we were talking about it as going outwards maybe it is more like an unfolding process?

[Christopher Alexander]:   I think it is yes. The business of going from the large to the small was more for convenience….you could make sense of the book most easily like that but it isn’t necessarily the way to actually do it.

While contributors to this project can learn from prior art in pattern languages, there’s some basic contexts to be understood and appreciated.

A. Service systems (science, management, engineering and design)

Service systems are described in the context of the 2008 report on “Succeeding through service innovation” by the Cambridge IfM and IBM.  The science, management, engineering and design perspectives are from the 2009 Spohrer and Kwan article on”Service Science, Management, Engineering, and Design (SSMED): An Emerging Discipline — Outline & References”, with ten basic concepts underlying a service systems worldview.

B. Pattern language (c.f. pattern catalog)

The working of a pattern language is described with extract of the 1977 book A Pattern Language, with 127 INITIMACY GRADIENT.  The history of the Hillside Group, with a software (design) pattern (definition) illustrates application in a domain other than the built environment.  The variety of forms of writing patterns has been described by Martin Fowler.  Ties between pattern language and systems thinking are drawn by James O. Coplien and Neil Harrison 2004 and by Werner Ulrich 2006.  Christopher Alexander’s “Quality without a Name” is described in Richard P. Gabriel 1996.  Addition domains with ongoing work with pattern languages are evident in Scrum, in group facilitation processes, and in communications in the public sphere.

C. A starter set?  7 conditions from service systems science

A meeting of systems scientists and systems engineers together as the Systems Science Working Group at the INCOSE International Workshop 2014 provided a forum for “a proposal for collaboration on a pattern language for service systems (science, management, engineering and design)”.  The title is deliberately long, and required some hours to unpack the content in the slide deck.

A Proposal for Collaboration on a Pattern Language for Service Systems (Science, Management, Engineering and Design)

The initiative has been presented as ambitious.  Writing a (good) pattern language is non-trivial.  The originator of the pattern language, Christopher Alexander, published his first work in 1968, and then spent 9 years in collaboration until the 1977 release of the landmark A Pattern Language: Towns, Building, Construction.  In a 2010 interview, Alexander was asked about his perception on similar efforts.

[Rob Hoskins]: What’s been your opinion of subsequent peoples’ attempts at doing Pattern Languages – I’ve seen a couple of different ones, have you seen many?

[Christopher Alexander]:  Some. They’re not that good. The reason I say that is that the people who’ve attempted to work with Pattern Languages, think about them, but are not conscious of the role of morphological elegance in the unfolding. In a biological case, they always are elegant and the unfolding morphology is a sort of magic. But it’s very simple.  It’s not as if it’s magic because it’s complicated, it’s just … like that.

[Rob Hoskins]:  I guess when we were talking before about how a Pattern Language goes from the large down to the small, maybe when we were talking about it as going outwards maybe it is more like an unfolding process?

[Christopher Alexander]:   I think it is yes. The business of going from the large to the small was more for convenience….you could make sense of the book most easily like that but it isn’t necessarily the way to actually do it.

While contributors to this project can learn from prior art in pattern languages, there’s some basic contexts to be understood and appreciated.

A. Service systems (science, management, engineering and design)

Service systems are described in the context of the 2008 report on “Succeeding through service innovation” by the Cambridge IfM and IBM.  The science, management, engineering and design perspectives are from the 2009 Spohrer and Kwan article on”Service Science, Management, Engineering, and Design (SSMED): An Emerging Discipline — Outline & References”, with ten basic concepts underlying a service systems worldview.

B. Pattern language (c.f. pattern catalog)

The working of a pattern language is described with extract of the 1977 book A Pattern Language, with 127 INITIMACY GRADIENT.  The history of the Hillside Group, with a software (design) pattern (definition) illustrates application in a domain other than the built environment.  The variety of forms of writing patterns has been described by Martin Fowler.  Ties between pattern language and systems thinking are drawn by James O. Coplien and Neil Harrison 2004 and by Werner Ulrich 2006.  Christopher Alexander’s “Quality without a Name” is described in Richard P. Gabriel 1996.  Addition domains with ongoing work with pattern languages are evident in Scrum, in group facilitation processes, and in communications in the public sphere.

C. A starter set?  7 conditions from service systems science

An interview on “Service Systems, Natural Systems” and the systems sciences

An interview by Performance magazine — with an issue focused on systems in architecture and related disciplines — has now been published. Since the content has been translated into German (as well as reduced for length) — the original interview is posted below, in English.


  • David Ing is the president (2011-2012), of the International Society for the Systems Sciences. He welcomes deep thinkers from around the world to join in an interactive learning experience at the annual meeting of the ISSS, scheduled for July 15-20, 2012, in San Jose, California. David Ing responded to this interview from his home in Toronto, Canada.

Performance, 2012, number 2

1. Could you please, in just a few words, explain to us what the systems sciences deal with and what your specialty area is?

The systems sciences — many of us prefer sciences in the plural — study the nature of parts and wholes. People may say that they are systems thinkers: they view the world primarily as relations of part-whole, part-part and whole-whole arrangements in space and time. Systems thinking enables a basic foundation across a wide variety of domains, including (i) natural systems in geographic and biological domains, and (ii) man-made systems in social and informatic domains.

In 2011-2012, I am serving as the president of the International Society for the Systems Sciences (ISSS). Our annual meeting for July 2012 will be at San Jose State University, in California. We expect a broad range of systems researchers and practitioners to come together for interdiscipinary and transciplinary discussions over five days. For 2013, we have plans for the meeting to convene in Hai Phong, Vietnam, led by the next ISSS president, Alexander Laszlo.

My interests are in (i) social systems — particularly in the context of work in business organizations and government — and in (ii) information systems — most recently transformed through the rise of the Internet, globalization, and social computing. Much of my current research is centered on the emerging science of service systems — often called service science — as the world has shifted from industrial age into global service economy.

2. In which areas of research can conclusions and consequences be drawn from the results of systems sciences?

Questions about the systems sciences lead us to think more deeply about the definitions of both science and systems.

An interview by Performance magazine — with an issue focused on systems in architecture and related disciplines — has now been published. Since the content has been translated into German (as well as reduced for length) — the original interview is posted below, in English.


  • David Ing is the president (2011-2012), of the International Society for the Systems Sciences. He welcomes deep thinkers from around the world to join in an interactive learning experience at the annual meeting of the ISSS, scheduled for July 15-20, 2012, in San Jose, California. David Ing responded to this interview from his home in Toronto, Canada.

Performance, 2012, number 2

1. Could you please, in just a few words, explain to us what the systems sciences deal with and what your specialty area is?

The systems sciences — many of us prefer sciences in the plural — study the nature of parts and wholes. People may say that they are systems thinkers: they view the world primarily as relations of part-whole, part-part and whole-whole arrangements in space and time. Systems thinking enables a basic foundation across a wide variety of domains, including (i) natural systems in geographic and biological domains, and (ii) man-made systems in social and informatic domains.

In 2011-2012, I am serving as the president of the International Society for the Systems Sciences (ISSS). Our annual meeting for July 2012 will be at San Jose State University, in California. We expect a broad range of systems researchers and practitioners to come together for interdiscipinary and transciplinary discussions over five days. For 2013, we have plans for the meeting to convene in Hai Phong, Vietnam, led by the next ISSS president, Alexander Laszlo.

My interests are in (i) social systems — particularly in the context of work in business organizations and government — and in (ii) information systems — most recently transformed through the rise of the Internet, globalization, and social computing. Much of my current research is centered on the emerging science of service systems — often called service science — as the world has shifted from industrial age into global service economy.

2. In which areas of research can conclusions and consequences be drawn from the results of systems sciences?

Questions about the systems sciences lead us to think more deeply about the definitions of both science and systems.

Systems thinking and (the) systems science(s) in a system of ideas

On the discussion list of the Systems Science Working Group, there’s a request to comment on the Overview of Systems Science wiki page (draft version 0.5) that is part of the Guide to Systems Engineering Book of Knowledge.  Basic descriptions are hard to write.  Asking the “what is …” question is a challenge of ontology, and may not cover the “why …” question coming from the perspective of teleology or the “how …” question coming from the history and philosophy of science.

I appreciate that novices like definitions.  In a scholarly style, I generally cite descriptions by individual thinkers who each have a system of ideas.  In an attempt to appreciate commonalities and differences between prominent figures in the systems movement, I had been hosting a series of Systems Sciences Connections Conversations aimed at traversing social ties between individuals.  As a fun example, we asked Allenna Leonard if Stafford Beer and Jane Jacobs knew each other, as they both lived in the Annex neighbourhood in Toronto.  Allenna’s response was, of course, they would see each other in places like the drug store.  Stafford Beer did use Cities and the Wealth of Nations as a foundation for his work in Uruguay, but there wasn’t really an occasion for ongoing collaboration.  Developing a network of systems of ideas is a more modest endeavour than trying to create a system of system of ideas.

Describing the world in objective entities isn’t the way I think.  I’m strongly influenced by the idea of reflexivity (described in the context of social theory on Wikipedia).  Pierre Bourdieu invited a path into his system of ideas as reflexive sociology.  George Soros has a general theory of reflexivity.

For descriptions in this domain — not definitions, for which a dictionary might be a better source — I’ll defer to International Encyclopedia of Systems and Cybernetics, edited by Charles François.  I have a copy of the 1997 first edition, which was superseded by a larger 2004 second edition that I haven’t seen.  Based on some entries in this encyclopedia, some Russell Ackoff readings, and my accumulated perspective on systems, I’ll make some assertions.

  • 1. Systems thinking and the systems sciences are parts of an ecology of knowledge
  • 2. Systems thinking prescribes an ordering of synthesis and analysis, emphasizing superordinates (containing wholes)
  • 3. The development of the “systems sciences” historically correlates with the rise of the “social systems sciences” program at the University of Pennsylvania
  • 4. The systems sciences have a heritages in cybernetics and general systems theory
  • 5. Systems thinking and the systems sciences manifest as systems approaches

For considerations of length, the Systems Science Working Group may split the content into two separate articles on systems science and systems methodology.

1. Systems thinking and the systems sciences are parts of an ecology of knowledge

Systems thinking and the systems science could be seen as subfields of knowledge.  They’re related, yet distinct.  Applying systems thinking on describing systems thinking leads to describing an ecology.

ECOLOGY of KNOWLEDGE

“The study of pattern of interrelationships among the various “species” (subsystems, sub-subsystems, etc.) and fields and subfields of knowledge with emphasis on:

On the discussion list of the Systems Science Working Group, there’s a request to comment on the Overview of Systems Science wiki page (draft version 0.5) that is part of the Guide to Systems Engineering Book of Knowledge.  Basic descriptions are hard to write.  Asking the “what is …” question is a challenge of ontology, and may not cover the “why …” question coming from the perspective of teleology or the “how …” question coming from the history and philosophy of science.

I appreciate that novices like definitions.  In a scholarly style, I generally cite descriptions by individual thinkers who each have a system of ideas.  In an attempt to appreciate commonalities and differences between prominent figures in the systems movement, I had been hosting a series of Systems Sciences Connections Conversations aimed at traversing social ties between individuals.  As a fun example, we asked Allenna Leonard if Stafford Beer and Jane Jacobs knew each other, as they both lived in the Annex neighbourhood in Toronto.  Allenna’s response was, of course, they would see each other in places like the drug store.  Stafford Beer did use Cities and the Wealth of Nations as a foundation for his work in Uruguay, but there wasn’t really an occasion for ongoing collaboration.  Developing a network of systems of ideas is a more modest endeavour than trying to create a system of system of ideas.

Describing the world in objective entities isn’t the way I think.  I’m strongly influenced by the idea of reflexivity (described in the context of social theory on Wikipedia).  Pierre Bourdieu invited a path into his system of ideas as reflexive sociology.  George Soros has a general theory of reflexivity.

For descriptions in this domain — not definitions, for which a dictionary might be a better source — I’ll defer to International Encyclopedia of Systems and Cybernetics, edited by Charles François.  I have a copy of the 1997 first edition, which was superseded by a larger 2004 second edition that I haven’t seen.  Based on some entries in this encyclopedia, some Russell Ackoff readings, and my accumulated perspective on systems, I’ll make some assertions.

  • 1. Systems thinking and the systems sciences are parts of an ecology of knowledge
  • 2. Systems thinking prescribes an ordering of synthesis and analysis, emphasizing superordinates (containing wholes)
  • 3. The development of the “systems sciences” historically correlates with the rise of the “social systems sciences” program at the University of Pennsylvania
  • 4. The systems sciences have a heritages in cybernetics and general systems theory
  • 5. Systems thinking and the systems sciences manifest as systems approaches

For considerations of length, the Systems Science Working Group may split the content into two separate articles on systems science and systems methodology.

1. Systems thinking and the systems sciences are parts of an ecology of knowledge

Systems thinking and the systems science could be seen as subfields of knowledge.  They’re related, yet distinct.  Applying systems thinking on describing systems thinking leads to describing an ecology.

ECOLOGY of KNOWLEDGE

“The study of pattern of interrelationships among the various “species” (subsystems, sub-subsystems, etc.) and fields and subfields of knowledge with emphasis on:

Digest on Service Systems Science at Tokyo Institute of Technology (2009)

Systems Sciences Meet Service SciencesThe Service Innovation Educational Program at the Tokyo Institute of Technology hosted an “Open Seminar on Service Systems Science” (with a flyer in PDF) — as well as a private “Invited Workshop on Services Science, Management and Engineering” — in February 2009.

I’ve just noticed that much of the content is totally opaque to people who don’t read Japanese, so I’ve posted my (English-language) digest of the meetings on the Coevolving Innovation Commons.  The text is incomplete, but it at least provides a minimal sketch of some of the ideas discussed. (Digital photographs help, too!).  Speakers include:

The 2009 meetings were an annual extension of the 2008 21st Century CoE Symposium, and the first Invited Workshop on SSME.

With many of the researchers coming from a perspective of systems science, the trend has been to work out some of the ideas on an emerging science of service systems.

Systems Sciences Meet Service SciencesThe Service Innovation Educational Program at the Tokyo Institute of Technology hosted an “Open Seminar on Service Systems Science” (with a flyer in PDF) — as well as a private “Invited Workshop on Services Science, Management and Engineering” — in February 2009.

I’ve just noticed that much of the content is totally opaque to people who don’t read Japanese, so I’ve posted my (English-language) digest of the meetings on the Coevolving Innovation Commons.  The text is incomplete, but it at least provides a minimal sketch of some of the ideas discussed. (Digital photographs help, too!).  Speakers include:

The 2009 meetings were an annual extension of the 2008 21st Century CoE Symposium, and the first Invited Workshop on SSME.

With many of the researchers coming from a perspective of systems science, the trend has been to work out some of the ideas on an emerging science of service systems.

Business Models and Evolving Economic Paradigms: A Systems Science Approach

In summer 2006, I constructed a curriculum on International Service Business Management for a one-year master’s program in Finland. Appropriate to the Finnish style, this content was assembled in rapid development. With a profile of students admitted mostly with technical undergraduate degrees and 5-to-10 years of working experience, the curriculum leaned toward the style normally expected in a practical executive MBA program.

In contrast, at presentations in August 2007, and then again in March 2008, Jim Kijima proposed a more ambitious challenge — for the new program at the Tokyo Institute of Technology — looking at services science based on systems science. For full-time graduate students, he sees systems science as a “liberal art” where their perspectives are broadened beyond their disciplinary technical teaching. In Japan, it’s not enough to have T-shaped professionals, they expect pi-shaped people, i.e. two downward stems with at least a major and a minor, in addition to the crossbar.

I took the idea of services science and systems science as a challenge, and constructed an article and a presentation for the ISSS Madison 2008 meeting as an exercise. With a target of master’s level engineering and management students, developing this content was based on a few premises:

In summer 2006, I constructed a curriculum on International Service Business Management for a one-year master’s program in Finland. Appropriate to the Finnish style, this content was assembled in rapid development. With a profile of students admitted mostly with technical undergraduate degrees and 5-to-10 years of working experience, the curriculum leaned toward the style normally expected in a practical executive MBA program.

In contrast, at presentations in August 2007, and then again in March 2008, Jim Kijima proposed a more ambitious challenge — for the new program at the Tokyo Institute of Technology — looking at services science based on systems science. For full-time graduate students, he sees systems science as a “liberal art” where their perspectives are broadened beyond their disciplinary technical teaching. In Japan, it’s not enough to have T-shaped professionals, they expect pi-shaped people, i.e. two downward stems with at least a major and a minor, in addition to the crossbar.

I took the idea of services science and systems science as a challenge, and constructed an article and a presentation for the ISSS Madison 2008 meeting as an exercise. With a target of master’s level engineering and management students, developing this content was based on a few premises:

Curriculum in a coevolving world

If the world is changing so that co-evolution of organizations and technology is required, what is the content that students should be trained in?

Here’s an interesting high-level view of “New ICT Curricula for the 21st Century“:

… the Career Space consortium recommends that ICT Curricula should consist of the following core elements:

  • a scientific base of 30%,
  • a technology base of 30%,
  • an application base and systems thinking of 25% and,
  • a personal and business skills element of up to 15%.

It’s probably something that should be noted, given the “brand name” recognition of sponsors associated with the consortium.

I’m active in the systems science community, so I find it interesting that “systems thinking” is named on the list. This requirement is less surprising, given the origins of the initiative in Europe.

So, should we have a similar interest in “systems thinking” in North America?

If the world is changing so that co-evolution of organizations and technology is required, what is the content that students should be trained in?

Here’s an interesting high-level view of “New ICT Curricula for the 21st Century“:

… the Career Space consortium recommends that ICT Curricula should consist of the following core elements:

  • a scientific base of 30%,
  • a technology base of 30%,
  • an application base and systems thinking of 25% and,
  • a personal and business skills element of up to 15%.

It’s probably something that should be noted, given the “brand name” recognition of sponsors associated with the consortium.

I’m active in the systems science community, so I find it interesting that “systems thinking” is named on the list. This requirement is less surprising, given the origins of the initiative in Europe.

So, should we have a similar interest in “systems thinking” in North America?

  • RSS qoto.org/@daviding (Mastodon)

    • New status by daviding October 9, 2019
      Declarations of sapiosexuality may describe individuals seeking partners for intellectual intercourse.> A self-described “sapiosexual," someone who is primarily attracted to intelligence over physical appearance, Van Dusen says she now screens her dates for post-secondary education. [.....]> Many sapiosexuals acknowledge the term can come off elitist, but in the often superficial world of online dating, they […]
    • New status by daviding August 19, 2019
      In the Canadian press, this is attributed to inverted yield curve, resulting from the trade war. > Anyone buying that bond is willingly buying an investment that's guaranteed to lose money, but investors are more than happy to buy it up - because the fear is that alternative investments will fare even worse. [....]> Those […]
    • New status by daviding August 19, 2019
      There's something seriously wrong in the global financial markets, when banks are offering mortgages at zero or negative rates. > Jyske Bank, Denmark's third largest, has begun offering borrowers a 10-year deal at -0.5%, while another Danish bank, Nordea, says it will begin offering 20-year fixed-rate deals at 0% and a 30-year mortgage at 0.5%.> […]
    • New status by daviding August 18, 2019
      Web video of Systems Changes: Learning from the Christopher Alexander Legacy, extending #patternlanguage especially Eishin School and Multi-Service Centers methods-in-practice. For #SystemsThinking Ontario, up the learning curve on ongoing research. http://coevolving.com/blogs/index.php/archive/systems-changes-learning-from-the-christopher-alexander-legacy-st-on-2019-02-11/
    • New status by daviding August 16, 2019
      Web video of presentation of Evolving Pattern language towards an Affordance Language, 2018, on week visiting#RaphaelArar and #JimSpohrer at Almaden. Insider's history of science and prospects http://coevolving.com/blogs/index.php/archive/evolving-pattern-language-towards-an-affordance-language-almaden-2018-05-09/#systemsthinking #patternlanguage
  • RSS on IngBrief

    • Own opinion, but not facts
      “You are entitled to your own opinions, but not to your own facts” by #DanielPatrickMoynihan is predated on @Freakonomics by #BernardMBaruch 1950 “Every man has a right to his own opinion, but no man has a right to be wrong in his facts”. Source: “There Are Opinions, And Then There Are Facts” | Fred Shapiro […]
    • R programming is from S, influenced by APL
      History of data science tools has evolved to #rstats of the 1990s, from the S-Language at Bell Labs in the 1970s, and the
    • Bullshit, Politics, and the Democratic Power of Satire | Paul Babbitt | 2013
      Satire can be an antidote, says Prof. #PaulBabbitt @muleriders , to #bullshit (c.f. rhetoric; hypocrisy; crocodile tears; propaganda; intellectual dishonesty; politeness, etiquette and civility; commonsense and conventional wisdom; symbolic votes; platitudes and valence issues).
    • Health Systems Research and Critical Systems Thinking: The case for partnership | Michael C. Jackson, Luis G. Sambo | 2019/08
      If we don’t first know “what is system is”, how do we approach an intervention? #MichaelCJackson OBE and Dr. #LuisGSambo appreciate the difference between “systems thinking” (plural) and “system dynamics” (singular), and suggest expanding theory with Critical #SystemThinking in Health Systems Research. An ignorance of history is, if anything, even more pronounced among those authors […]
    • Yin-Yang theory alongside meridians, Five Elements as secondary emblems | Kaptchuk (1983)
      In deciphering Yin-Yang and Five Elements (Five Phases) thinking, #Kaptchuk (1983) has a footnote and then an appendix that clarifies the way forward for appreciating foundations of Chinese medicine favouring the former.
    • Defining the ‘field at a given time’ | Lewin | 1943
      The field theory in psychology by #KurtLewin 1943 derives from classical field theory (viz. electromagnetism and gravitation), predating quantum field theory (viz. subatomic particles). For psychology, Lewin wrote in 1943 how history (and a subjective view of the future) matters. It is correct that field theory emphasizes the importance of the fact that any event […]
  • Recent Posts

  • Archives

  • RSS on daviding.com

    • 2019/09 Moments September 2019
      Full month, winding down family business in Gravenhurst, starting Ryerson Chang certificate program in Big Data, with scheduled dinners with family and friends.
    • 2019/08 Moments August 2018
      Enjoyed summer with events in Toronto, followed by trips back my home town Gravenhurst, staying overnight for the first time in over 30 years.
    • 2019/07 Moments July 2019
      Busy month of living every day of the summer to the fullest, visiting family and friends, enjoying the local sights of the city.
    • 2019/06 Moments June 2019
      Summer arrived in Toronto, with the month ending in travel to BC and Oregon.
    • 2019/05 Moments May 2019
      Family time, empty nest, short trip to conference nearby, friends at home.
    • 2019/04 Moments April 2019
      End of a 23-day visit in Shanghai, readjusting to Eastern Time with the many lecture, meetup, friends and family distractions of Toronto.
  • RSS on Media Queue

  • Meta

  • Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    Theme modified from DevDmBootstrap4 by Danny Machal