Coevolving Innovations

… in Business Organizations and Information Technologies

Currently Viewing Posts Tagged education

Conversations on an emerging science of service systems (IFSR Pernegg 2010)

Earlier this year, in April, the International Federation for Systems Research hosted its biannual research conversation, this time in Pernegg, Austria.  This meeting was a four-day opportunity to continue developing ideas on the emerging science of service systems begun in July 2009.

The proceedings from the meeting have now been published.  I’ve extracted the chapter for our team as a separate downloadable document.  The report starts with a description of our activities, and an outline of our progress.

The conversation began with self-reflections on personal experiences leading each of the individuals to the systems sciences, acknowledging the influence of those trajectories on their perspectives on service systems.  In recognition of this science of service systems as a potentially a new paradigm, much of the time together was spent in sensemaking about the intersection between ongoing services research and systems sciences perspectives.  This sensemaking led the team to focus the dialogue more on posing the right questions to clarify thinking broadly, as opposed to diving deeply towards solutions that would be tied up as issues within a problematique.

Earlier this year, in April, the International Federation for Systems Research hosted its biannual research conversation, this time in Pernegg, Austria.  This meeting was a four-day opportunity to continue developing ideas on the emerging science of service systems begun in July 2009.

The proceedings from the meeting have now been published.  I’ve extracted the chapter for our team as a separate downloadable document.  The report starts with a description of our activities, and an outline of our progress.

The conversation began with self-reflections on personal experiences leading each of the individuals to the systems sciences, acknowledging the influence of those trajectories on their perspectives on service systems.  In recognition of this science of service systems as a potentially a new paradigm, much of the time together was spent in sensemaking about the intersection between ongoing services research and systems sciences perspectives.  This sensemaking led the team to focus the dialogue more on posing the right questions to clarify thinking broadly, as opposed to diving deeply towards solutions that would be tied up as issues within a problematique.

Learning 21st century skills, including systems thinking, through game-based education

An article on NPR about the Quest to Learn program in New York City led by Katie Salen cites systems thinking as one of the foundations for 21st century literacy. I found this article on a lead from Erika von Hoyer on the Systems Community of Inquiry via her Twitter feed.

The learning model at Quest to Learn says: “Games and other forms of digital media serve another useful purpose at Quest: they serve to model the complexity and promise of ‘systems.’ Understanding and accounting for this complexity is a fundamental literacy of the 21st century”.   Reading the CV of Katie Salen, I notice that she was working on the Spaceship Earth Game at the Buckminister Fuller Institute in 2005.

This led to finding an interview about the three-year study on “Grinding New Lenses: A Design Project to Support a Systems View of the World” conducted by Kylie Pepper and Melissa Gresalfi at Indiana University.  The funding by the MacArthur Foundation seems to be part of the research on assessing learning with new media as part of the 21st century assessment project.

In a panel at the Digital Media & Learning conference, Valerie Shute says “What attributes of the students are important for success in the 21st century? Systems thinking, collaborating, resource-management skills”.  This is related to worked examples and evidence-centered design.

This direction on systems thinking in middle school is compatible with the proposed design for K-12 education on Smarter Planet Service Systems proposed by Jim Spohrer.  The content is similar; the game based media could be more fun than education from an industrial era mindset.

An article on NPR about the Quest to Learn program in New York City led by Katie Salen cites systems thinking as one of the foundations for 21st century literacy. I found this article on a lead from Erika von Hoyer on the Systems Community of Inquiry via her Twitter feed.

The learning model at Quest to Learn says: “Games and other forms of digital media serve another useful purpose at Quest: they serve to model the complexity and promise of ‘systems.’ Understanding and accounting for this complexity is a fundamental literacy of the 21st century”.   Reading the CV of Katie Salen, I notice that she was working on the Spaceship Earth Game at the Buckminister Fuller Institute in 2005.

This led to finding an interview about the three-year study on “Grinding New Lenses: A Design Project to Support a Systems View of the World” conducted by Kylie Pepper and Melissa Gresalfi at Indiana University.  The funding by the MacArthur Foundation seems to be part of the research on assessing learning with new media as part of the 21st century assessment project.

In a panel at the Digital Media & Learning conference, Valerie Shute says “What attributes of the students are important for success in the 21st century? Systems thinking, collaborating, resource-management skills”.  This is related to worked examples and evidence-centered design.

This direction on systems thinking in middle school is compatible with the proposed design for K-12 education on Smarter Planet Service Systems proposed by Jim Spohrer.  The content is similar; the game based media could be more fun than education from an industrial era mindset.

Lifelong education on service systems: a perspective for STEM learners

One of the benefits of the IBM’s Smarter Planet vision(s) is its encouragement to think about the 21st century world from a fresh perspective.  The rise of the service economy — which is not the same as the service sector — calls for the nurturing of talents with different emphases.  While curricula typically have a strong grasp of agricultural systems (developed since, say, 1600 A,.D.), and industrial systems (since, say, 1850 A.D.), the science of service systems is still emerging.

A study on Science, Technology, Engineering and Mathematics (STEM) education by a 2007 National Academies committee published recommendations in 2008 for professional science master’s education that is interdisciplinary in character.  Such an investment in curriculum change has been proposed as a good use of stimulus funding in the U.S. In concert, 8 of 10 students expressed a wish for universities to revamp their traditional learning environments in the Smarter Planet University Jam conducted in spring 2009 .

In 2008 and 2009, the focus has shifted to primary and secondary school education, convening another National Academies committee centered on K-12, with a report due in 2010.  Jim Spohrer — formerly the Director of Almaden Services Research, and now the Director of IBM Global University Programs — updated me on his current thinking about a potential design for education on Smarter Planet Service Systems.

Systems that move, store, harvest, process Kindergarten Transportation
1 Water and waste management
2 Food and global supply chain
3 Energy and energy grid
4 Information and communications technology (ICT) infrastructure
Systems that enable healthy, wealthy and wise people 5 Building and construction
6 Banking and finance
7 Retail and hospitality
8 Healthcare
9 Education (including universities)
Systems that govern 10 Government (cities)
11 Government (regions / states)
12 Government (nations)
Higher education Specific service systems
Professional life Specific service systems

Jim is following confirmation of the effectiveness of a Challenge-Based Learning approach by the New Media Consortium as “a strategy to engage kids in any class by giving them the opportunity to work on significant problems that have real-world implications”.  I liked his ordering of systems into three levels:

One of the benefits of the IBM’s Smarter Planet vision(s) is its encouragement to think about the 21st century world from a fresh perspective.  The rise of the service economy — which is not the same as the service sector — calls for the nurturing of talents with different emphases.  While curricula typically have a strong grasp of agricultural systems (developed since, say, 1600 A,.D.), and industrial systems (since, say, 1850 A.D.), the science of service systems is still emerging.

A study on Science, Technology, Engineering and Mathematics (STEM) education by a 2007 National Academies committee published recommendations in 2008 for professional science master’s education that is interdisciplinary in character.  Such an investment in curriculum change has been proposed as a good use of stimulus funding in the U.S. In concert, 8 of 10 students expressed a wish for universities to revamp their traditional learning environments in the Smarter Planet University Jam conducted in spring 2009 .

In 2008 and 2009, the focus has shifted to primary and secondary school education, convening another National Academies committee centered on K-12, with a report due in 2010.  Jim Spohrer — formerly the Director of Almaden Services Research, and now the Director of IBM Global University Programs — updated me on his current thinking about a potential design for education on Smarter Planet Service Systems.

Systems that move, store, harvest, process Kindergarten Transportation
1 Water and waste management
2 Food and global supply chain
3 Energy and energy grid
4 Information and communications technology (ICT) infrastructure
Systems that enable healthy, wealthy and wise people 5 Building and construction
6 Banking and finance
7 Retail and hospitality
8 Healthcare
9 Education (including universities)
Systems that govern 10 Government (cities)
11 Government (regions / states)
12 Government (nations)
Higher education Specific service systems
Professional life Specific service systems

Jim is following confirmation of the effectiveness of a Challenge-Based Learning approach by the New Media Consortium as “a strategy to engage kids in any class by giving them the opportunity to work on significant problems that have real-world implications”.  I liked his ordering of systems into three levels:

Digest on Service Systems Science at Tokyo Institute of Technology (2009)

Systems Sciences Meet Service SciencesThe Service Innovation Educational Program at the Tokyo Institute of Technology hosted an “Open Seminar on Service Systems Science” (with a flyer in PDF) — as well as a private “Invited Workshop on Services Science, Management and Engineering” — in February 2009.

I’ve just noticed that much of the content is totally opaque to people who don’t read Japanese, so I’ve posted my (English-language) digest of the meetings on the Coevolving Innovation Commons.  The text is incomplete, but it at least provides a minimal sketch of some of the ideas discussed. (Digital photographs help, too!).  Speakers include:

The 2009 meetings were an annual extension of the 2008 21st Century CoE Symposium, and the first Invited Workshop on SSME.

With many of the researchers coming from a perspective of systems science, the trend has been to work out some of the ideas on an emerging science of service systems.

Systems Sciences Meet Service SciencesThe Service Innovation Educational Program at the Tokyo Institute of Technology hosted an “Open Seminar on Service Systems Science” (with a flyer in PDF) — as well as a private “Invited Workshop on Services Science, Management and Engineering” — in February 2009.

I’ve just noticed that much of the content is totally opaque to people who don’t read Japanese, so I’ve posted my (English-language) digest of the meetings on the Coevolving Innovation Commons.  The text is incomplete, but it at least provides a minimal sketch of some of the ideas discussed. (Digital photographs help, too!).  Speakers include:

The 2009 meetings were an annual extension of the 2008 21st Century CoE Symposium, and the first Invited Workshop on SSME.

With many of the researchers coming from a perspective of systems science, the trend has been to work out some of the ideas on an emerging science of service systems.

Curriculum in a coevolving world

If the world is changing so that co-evolution of organizations and technology is required, what is the content that students should be trained in?

Here’s an interesting high-level view of “New ICT Curricula for the 21st Century“:

… the Career Space consortium recommends that ICT Curricula should consist of the following core elements:

  • a scientific base of 30%,
  • a technology base of 30%,
  • an application base and systems thinking of 25% and,
  • a personal and business skills element of up to 15%.

It’s probably something that should be noted, given the “brand name” recognition of sponsors associated with the consortium.

I’m active in the systems science community, so I find it interesting that “systems thinking” is named on the list. This requirement is less surprising, given the origins of the initiative in Europe.

So, should we have a similar interest in “systems thinking” in North America?

If the world is changing so that co-evolution of organizations and technology is required, what is the content that students should be trained in?

Here’s an interesting high-level view of “New ICT Curricula for the 21st Century“:

… the Career Space consortium recommends that ICT Curricula should consist of the following core elements:

  • a scientific base of 30%,
  • a technology base of 30%,
  • an application base and systems thinking of 25% and,
  • a personal and business skills element of up to 15%.

It’s probably something that should be noted, given the “brand name” recognition of sponsors associated with the consortium.

I’m active in the systems science community, so I find it interesting that “systems thinking” is named on the list. This requirement is less surprising, given the origins of the initiative in Europe.

So, should we have a similar interest in “systems thinking” in North America?

  • RSS qoto.org/@daviding (Mastodon)

    • daviding: In an ecology of nat June 4, 2020
      In an ecology of nations, > “For the British and Canadians to say no publicly is highly unusual,” given their closeness to the United States, said Carl Bildt, the former Swedish prime minister. P.S. I am a Canadian. https://www.nytimes.com/2020/06/02/world/europe/trump-merkel-allies.html
    • daviding: Will this decade be May 27, 2020
      Will this decade be called the "Dark Twenties", in post-pandemic economic sociology? #JohnIbbitson writes: > It took years for Western economies to fully recover from the economic shock of 2008-09. This shock is far worse. How much worse? No one can be sure. [....] > We are entering the Dark Twenties. No one knows when […]
    • daviding: Moderating social me May 27, 2020
      Moderating social media context in an nuanced way may be done with a warning or caution, rather than by deleting the message or banning the individual. #HenryFarrell at #WashingtonPost analyzes fact-checking on POTUS. > Now, Twitter has done just this. Trump’s tweet has not been removed — but it has been placed behind a notice, […]
    • daviding: Our immune systems a May 26, 2020
      Our immune systems are complex, so improving resistance to disease may be puffery, writes #TimothyCaulfield . > I looked at how the phrase “boosting our immune system” is being represented on social media. This concept is everywhere right now: it is being pushed by .... But in reality, the immune system is fantastically complex and can’t be “boosted.” (Even […]
    • daviding: Ventures founded on May 17, 2020
      Ventures founded on growth maximization thinking unicorn might instead turn towards sustainability as camels. > Where Silicon Valley has been chasing unicorns (a colloquial term for startups with billion-dollar valuations), “camel” startups, such as those founded by leading global entrepreneurs, prioritize sustainability and resiliency.> The humble camel adapts to multiple climates, survives without food or […]
  • RSS on IngBrief

    • Wholism, reductionism (Francois, 2004)
      Proponents of #SystemsThinking often espouse holism to counter over-emphasis on reductionism. Reading some definitions from an encyclopedia positions one in the context of the other (François 2004).
    • It matters (word use)
      Saying “it doesn’t matter” or “it matters” is a common expression in everyday English. For scholarly work, I want to “keep using that word“, while ensuring it means what I want it to mean. The Oxford English Dictionary (third edition, March 2001) has three entries for “matter”. The first two entries for a noun. The […]
    • Systemic Change, Systematic Change, Systems Change (Reynolds, 2011)
      It's been challenging to find sources that specifically define two-word phrases -- i.e. "systemic change", "systematic change", "systems change" -- as opposed to loosely inferring reductively from one-word definitions in recombination. MartinReynolds @OpenUniversity clarifies uses of the phrases, with a critical eye into motives for choosing a specific label, as well as associated risks and […]
    • Environmental c.f. ecological (Francois, 2004; Allen, Giampietro Little 2003)
      The term "environmental" can be mixed up with "ecological", when the meanings are different. We can look at the encyclopedia definitions (François 2004), and then compare the two in terms of applied science (i.e. engineering with (#TimothyFHAllen @MarioGiampietro and #AmandaMLittle, 2003).
    • Christopher Alexander’s A Pattern Language: Analysing, Mapping and Classifying the Critical Response | Dawes and Ostwald | 2017
      While many outside of the field of architecture like the #ChristopherAlexander #PatternLanguage approach, it's not so well accepted by his peers. A summary of criticisms by #MichaelJDawes and #MichaelJOstwald @UNSWBuiltEnv is helpful in appreciating when the use of pattern language might be appropriate or not appropriate.
    • Field (system definitions, 2004, plus social)
      Systems thinking should include not only thinking about the system, but also its environment. Using the term "field" as the system of interest plus its influences leaves a lot of the world uncovered. From the multiple definitions in the International Encyclopedia of Systems and Cybernetics , there is variety of ways of understanding "field".
  • Recent Posts

  • Archives

  • RSS on daviding.com

    • 2020/05 Moments May 2020
      Life at home is much the same with the pandemic sheltering-in-place directives, touring city streets on bicycle, avoiding the parks on weekends.
    • 2020/04 Moments April 2020
      Living in social isolation in our house with 5 family members, finishing off teaching courses and taking courses.
    • 2020/03 Moments March 2020
      The month started with a hectic coincidence of events as both a teacher and student at two universities, abruptly shifting to low gear with government directives for social distancing.
    • 2020/02 Moments February 2020
      Winter has discouraged enjoying the outside, so more occasions for friend and family inside.
    • 2020/01 Moments January 2020
      Back to school, teaching and learning at 2 universities.
    • 2019/12 Moments December 2019
      First half of December in finishing up course assignments and preparing for exams; second half on 11-day family vacation in Mexico City.
  • RSS on Media Queue

  • Meta

  • Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    Theme modified from DevDmBootstrap4 by Danny Machal