Coevolving Innovations

… in Business Organizations and Information Technologies

24 Search Results for "alexander"

Systems Thinking and Science, (Systems Thinking Ontario, 2013-01-17)

The inaugural meeting of Systems Thinking Ontario convened in the Lambert Lounge at OCAD U. on the evening of January 17.  The theme for the meeting was “Systems Thinking and Science”, with the focus question for the evening as: “Is the function of systems thinking to be (i) a science or (ii) a complement to science?”

The suggested pre-reading for the session was a rather old (1956) foundational article:

After a preamble on the role of Kenneth Boulding in the founding of the Society for General Systems Research (now known as the International Society for the Systems Sciences), some slides with the major points of the article were provided by attendees.

Towards a goal of organizing general systems theory, Boulding suggested two approaches:  (i) looking empirically for general phenomena across disciplines, and building up general theoretical models, or (ii) arranging the empirical fields into a hierarchy of complexity of organization, while trying to develop an abstraction appropriate to each.

Examples of the first approach included the interactions of populations, behaviours of individuals, growth, and communication and information processes.  Boulding saw that such an approach could lead to a general theory (of dynamics and interaction), but thought that this would be “a long way ahead”.

In the second approach, Boulding proposed a hierarchy of complexity — of (i) frameworks, (ii) clockworks, (iii) thermostat, (iv) cell, (v) plant, (vi) animal, (vii) human, (viii) social organization, and (ix) transcendental systems — that was more systematic.  … Read more (in a new tab)

An interview on “Service Systems, Natural Systems” and the systems sciences

An interview by Performance magazine — with an issue focused on systems in architecture and related disciplines — has now been published. Since the content has been translated into German (as well as reduced for length) — the original interview is posted below, in English.


  • David Ing is the president (2011-2012), of the International Society for the Systems Sciences. He welcomes deep thinkers from around the world to join in an interactive learning experience at the annual meeting of the ISSS, scheduled for July 15-20, 2012, in San Jose, California. David Ing responded to this interview from his home in Toronto, Canada.

Performance, 2012, number 2

1. Could you please, in just a few words, explain to us what the systems sciences deal with and what your specialty area is?

The systems sciences — many of us prefer sciences in the plural — study the nature of parts and wholes. People may say that they are systems thinkers: they view the world primarily as relations of part-whole, part-part and whole-whole arrangements in space and time. Systems thinking enables a basic foundation across a wide variety of domains, including (i) natural systems in geographic and biological domains, and (ii) man-made systems in social and informatic domains.

In 2011-2012, I am serving as the president of the International Society for the Systems Sciences (ISSS). Our annual meeting for July 2012 will be at San Jose State University, in California. We expect a broad range of systems researchers and practitioners to come together for interdiscipinary and transciplinary discussions over five days.… Read more (in a new tab)

Systems thinking, systems that learn, and learning in service systems

Does systems thinking lead to systems that can learn as they evolve (or devolve)? How does a service system continue to learn about purposes (and objectives and goals) in its wholes and its parts? When a service system learns that change is called for, can that system consciously act to evolve (or devolve)?

Focusing on definitions of science and of systems thinking can lead to thinking about a static thing, rather than intellectual virtues that changes over time. Applying systems thinking to science, the intellectual virtues of episteme (know why), techne (know how) and phronesis (know when, know where, know whom) can each or all evolve. Actually, they coevolve, because the why, how, when, where and whom are all changing simultaneously.

Many of today’s services systems are under stress, possibly reaching a point of unsustainability. Does (or would) systems thinking help? To be concise, let’s try some responses to the three questions at the outset of this essay.

  • Does systems thinking lead to systems that can learn as they evolve (or devolve)?
    • A system in which systems thinking has contributed towards its design should have had features or properties included that are appropriate for its environment. If the environment changes, the fitness of the system may or may not degrade. A system intended for volatile environments may be have been designed to respond to change, or to fail — potentially gracefully — with signals that a more appropriate replacement should be put in place.
Read more (in a new tab)

Science, systems thinking, and advances in theories, methods and practices

Post-2013 addendum:  Many of the ideas in this January 2012 blog post — particularly around episteme, techne and phronesis — were more formally published in October 2013 as “Rethinking Systems Thinking: Learning and Coevolving with the World”, in Systems Research and Behavioral Science. Please cite that article, rather than this preliminary blog post.

Commenting on the Overview of Systems Science (draft version 0.5) for the Guide to the Systems Engineering Book of Knowledge is problematic. Applying systems thinking on systems thinking constitutes a mess of ideas that is difficult to tease apart. Breaking the idea of “systems science” in its parts of (i) “systems” and (ii) “science” is reductive. The more compatible approach is to view “science” with a larger context of “systems thinking”.

I’ll attempt to shed some more light on concerns and perspectives in the following sections:

  • 1. The definition of science often tends towards disciplinarity; systems thinking aims for transdisciplinarity
  • 2. Science is part of thinking, which can be philosophically framed as episteme (know why), techne (know how) and phronesis (know when, know when, know whom)
  • 3. Domains of systems thinking can be categorized into systems theory, systems methods, and systems practice
  • 4. Incomplete systems thinking may suggest paths through which gaps may be filled
  • 5. Systems thinking has evolved with roots of linear causality, circular causality, complexity theory and reflexivity theory
  • 6. Opportunities to refresh ties between systems thinking and action science, theory of practice and social learning could be pursued

The discussion of science and systems thinking leads to perspectives at another level.… Read more (in a new tab)

Systems sciences and the 1957-58 Fellows of the Center for Advanced Study in the Behavioral Sciences

How do systems — systems sciences, systems thinking, systems practice — fit into the way that individuals and social groups behave?  The connections between the development of general systems theory and interdisciplinary work stretches back into the mid-20th century.  In the Science of Synthesis, Debora Hammond traced the history of researchers bridging over disciplinary boundaries.

Early in the fall of 1954, four of the distinguished CASBS [Center for Advanced Studies in the Behavioral Sciences] fellows — Bertalanffy, Boulding, Gerard, and Rapoport — sat together at lunch discussing their mutual interest in theoretical frameworks relevant to the study of different kinds of systems, including physical, technological, biological, social, and symbolic systems. According to Boulding, someone suggested they form a society to foster interdisciplinary research on a general theory of complex systems, and thus the idea for the Society for General Systems Research (SGSR) was born.  [Hammond 2003, p. 9]

Initiated by a grant from the Ford Foundation in 1954, the Center for Advanced Study in the Behavioral Sciences continues today, having joined Stanford University in 2008.  The luminaries founding the Society for General Systems Research — Ludwig von Bertalanffy, Kenneth Boulding, Ralph Gerard and Anatol Rapoport — continue to be held in high regard today, in the International Society for the Systems Sciences (as the society was renamed in 1998).

The CASBS ties surfaced during the research leading to the report “John Bowlby – Rediscovering a systems scientist“, authored by Gary Metcalf.  … Read more (in a new tab)

System envisioning (OOPSLA 1998 workshop summary)

Reported by: Charles E. Matthews and Ralph Hodgson

Workshop Organizers: Ralph Hodgson, Tom Bridge, Charles E. Matthews, Robert Coyne, Bruce Anderson, Deborah Leishman, Doug McDavid, Carl Ballard

Editorial note by David Ing: This report is republished on coevolving.com with the permission of Ralph Hodgson received 2006/02/16. The original article is not available online, but the reference is provided as http://doi.acm.org/10.1145/346852.346964 Some addresses at the end of the article have been corrected.

Overview

Systems are conceived out of an understanding and conceptualizing of a problem space. System Envisioning is about how we create possibilities for what a system might and should do and seeks to answer:

  • How do we formulate and choose among alternative concepts of a system?
  • What considerations affect the trade-offs and the interrelationships between requirements, specification, and design?
  • How are these aspects of system development affected by the political, social, and cultural issues within an organization?

Motivations

This workshop was motivated by an interest in sharing experiences on the relationships between problem domain understanding and creative thinking on formulating systems concepts. We were interested in how different types of thinking and action are involved in developing the conceptual architecture of a system. Particularly, we were concerned with requirements elicitation and generation, organizational design, systems thinking, holonics and cybernetics, object thinking, creativity and imagineering, metaphorical exploration, synectics and analogical reasoning, human communications and dialog-based interaction.

Goals and Objectives

We wanted to identify motivational interests and to share experiences on how system envisioning has happened and can happen in system development projects – including experiences related to the effectiveness of tools used within the specification and development process.… Read more (in a new tab)

  • RSS qoto.org/@daviding (Mastodon)

  • RSS on IngBrief

    • World Hypotheses (Stephen C. Pepper) as a pluralist philosophy [Rescher, 1994]
      In trying to place the World Hypotheses work of Stephen C. Pepper (with multiple root metaphors), Nicholas Rescher provides a helpful positioning. — begin paste — Philosophical perspectivism maintains that substantive philosophical positions can be maintained only from a “perspective” of some sort. But what sort? Clearly different sorts of perspectives can be conceived of, […]
    • The Nature and Application of the Daodejing | Ames and Hall (2003)
      Ames and Hall (2003) provide some tips for those studyng the DaoDeJing.
    • Diachronic, diachrony
      Finding proper words to express system(s) change(s) can be a challenge. One alternative could be diachrony. The Oxford English dictionary provides two definitions for diachronic, the first one most generally related to time. (The second is linguistic method) diachronic ADJECTIVE Oxford English Dictionary, s.v. “diachronic (adj.), sense 1,” July 2023, https://doi.org/10.1093/OED/3691792233. For completeness, prochronic relates “to […]
    • Introduction, “Systems Thinking: Selected Readings, volume 2”, edited by F. E. Emery (1981)
      The selection of readings in the “Introduction” to Systems Thinking: Selected Readings, volume 2, Penguin (1981), edited by Fred E. Emery, reflects a turn from 1969 when a general systems theory was more fully entertained, towards an urgency towards changes in the world that were present in 1981. Systems thinking was again emphasized in contrast […]
    • Introduction, “Systems Thinking: Selected Readings”, edited by F. E. Emery (1969)
      In reviewing the original introduction for Systems Thinking: Selected Readings in the 1969 Penguin paperback, there’s a few threads that I only recognize, many years later. The tables of contents (disambiguating various editions) were previously listed as 1969, 1981 Emery, System Thinking: Selected Readings. — begin paste — Introduction In the selection of papers for this […]
    • Concerns with the way systems thinking is used in evaluation | Michael C. Jackson, OBE | 2023-02-27
      In a recording of the debate between Michael Quinn Patton and Michael C. Jackson on “Systems Concepts in Evaluation”, Patton referenced four concepts published in the “Principles for effective use of systems thinking in evaluation” (2018) by the Systems in Evaluation Topical Interest Group (SETIG) of the American Evaluation Society. The four concepts are: (i) […]
  • Recent Posts

  • Archives

  • RSS on daviding.com

    • 2024/06 Moments June 2024
      Summer jazz at the Distillery District, in Washington DC while at the annual systems conference, and then Toronto Jazz Festival
    • 2024/05 Moments May 2024
      Busy May with art university graduate exhibition, travel to UK seeing Edinburgh, Hull, Manchester, London, returning home for wedding in Lefroy, annual cemetery visits with family, and spending time with extended family in from Chicago.
    • 2024/04 Moments April 2024
      Return from visiting family in Vancouver BC, clan events and eldercare appointments
    • 2024/03 Moments March 2024
      More work than play for first part of month, in anticipation of trip to Vancouver to visit family.
    • 2024/02 Moments February 2024
      Chinese New Year celebrations, both public and family, extended over two weekends, due to busy social schedules.
    • 2024/01 Moments January 2024
      Hibernated with work for most of January, with more activity towards the end of month with warmer termperatures.
  • RSS on Media Queue

    • What to Do When It’s Too Late | David L. Hawk | 2024
      David L. Hawk (American management theorist, architect, and systems scientist) has been hosting a weekly television show broadcast on Bold Brave Tv from the New York area on Wednesdays 6pm ET, remotely from his home in Iowa. Live, callers can join…Read more ›
    • 2021/06/17 Keekok Lee | Philosophy of Chinese Medicine 2
      Following the first day lecture on Philosophy of Chinese Medicine 1 for the Global University for Sustainability, Keekok Lee continued on a second day on some topics: * Anatomy as structure; physiology as function (and process); * Process ontology, and thing ontology; * Qi ju as qi-in-concentrating mode, and qi san as qi-in-dissipsating mode; and […]
    • 2021/06/16 Keekok Lee | Philosophy of Chinese Medicine 1
      The philosophy of science underlying Classical Chinese Medicine, in this lecture by Keekok Lee, provides insights into ways in which systems change may be approached, in a process ontology in contrast to the thing ontology underlying Western BioMedicine. Read more ›
    • 2021/02/02 To Understand This Era, You Need to Think in Systems | Zeynep Tufekci with Ezra Klein | New York Times
      In conversation, @zeynep with @ezraklein reveal authentic #SystemsThinking in (i) appreciating that “science” is constructed by human collectives, (ii) the west orients towards individual outcomes rather than population levels; and (iii) there’s an over-emphasis on problems of the moment, and…Read more ›
    • 2019/04/09 Art as a discipline of inquiry | Tim Ingold (web video)
      In the question-answer period after the lecture, #TimIngold proposes art as a discipline of inquiry, rather than ethnography. This refers to his thinking On Human Correspondence. — begin paste — [75m26s question] I am curious to know what art, or…Read more ›
    • 2019/10/16 | “Bubbles, Golden Ages, and Tech Revolutions” | Carlota Perez
      How might our society show value for the long term, over the short term? Could we think about taxation over time, asks @carlotaprzperez in an interview: 92% for 1 day; 80% within 1 month; 50%-60% tax for 1 year; zero tax for 10 years.Read more ›
  • Meta

  • Creative Commons License
    This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
    Theme modified from DevDmBootstrap4 by Danny Machal